期刊文献+

基于多特征的AdaBoost行人检测算法 被引量:6

AdaBoost for Pedestrian Detection Based on Multi-feature
在线阅读 下载PDF
导出
摘要 针对单特征辨识度较低问题,基于多特征的AdaBoost行人检测算法,提出一种融合灰度和轮廓信息的新的多特征综合表示方法.该方法通过统计样本的权重直方图建立分类模型,并用多个直方图的乘积表示样本在多特征下对应的联合概率分布,从而基于多特征联合概率更精准地描述行人,提高行人检测的鲁棒性.实验结果表明,改进后的基于多特征行人检测算法提高了行人检测精度、降低了误检率,目标识别的置信度明显提高,在多变的自然背景下可以取得较好的效果. In view of the problem of the low degree of single-feature recognizability in pedestrian detection based on feature,this paper introduces a kind of algorithm,AdaBoost for pedestrian detection based on multi-feature,and presents a new integrated approach of multi-feature which is the fusion of gray scale and contour information. This approach establishes a classification model by the histogram statistics of the weight samples,and the probability distribution is represented by multiplication of several histograms. So the joint probability based on multi-feature can get more accurate description of pedestrian,and improve the robustness of pedestrian detection. The experimental results show that pedestrian detection in this paper has improved the detection rate,lowered false alarm rate in a large extent,and the confidence level of target recognition has been markedly improved,and it can get the better performance of pedestrian detection in various natural background.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第3期449-455,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60873147 60573182) 国家高技术研究发展计划863项目基金(批准号:2008AA10Z224) 吉林省科技发展计划项目基金(批准号:20060527)
关键词 行人检测 多特征 直方图统计 查找表 pedestrian detection multi-feature histogram statistics look-up table
作者简介 黄如锦(1984-),女,汉族,硕士研究生,从事计算机图像处理的研究,E-mail:huangrujin@163.com. 通讯作者:李文辉(1961-),男,汉族,博士,教授,博士生导师,从事计算机图形学和计算机图像处理的研究,E-mail:liwh@jlu.edu.cn.
  • 相关文献

参考文献11

  • 1许言午,曹先彬,乔红.行人检测系统研究新进展及关键技术展望[J].电子学报,2008,36(5):962-968. 被引量:36
  • 2Papageorgiou C,Poggio T.A Trainable System for Object Detection[J].International Journal of Computer Vision,2000,38(1):15-33.
  • 3ZHAO Liang,Thorpe C E.Stereo and Neural Network-Based Pedestrian Detection[J].IEEE Transations on Intelligent Transportation Systems,2000,1(3):148-154.
  • 4Viola P,Jones M J,Snow D.Detecting Pedestrians Using Patterns of Motion and Appearance[J].International Journal of Computer Vision,2005,63(2):153-161.
  • 5Leibe B,Seemann E,Schiele B.Pedestrian on Computer Vision and Pattern Recognition Detection in Crowded Scenes[C] //Proceedings of the 2005 IEEE Computer Society Conference.San Diego,California:IEEE Computer Society,2005:878-885.
  • 6Alonso I P,Llorca D F,Sotelo M A.Combination of Feature Extraction Methods for SVM Pedestrian Detection[J].IEEE Transations on Intelligent Transportation Systems,2007,8(2):292-307.
  • 7周游,刘艳滢,王春民,陈静,陈秋萍,魏雅娟.几种人体运动检测算法的比较分析[J].吉林大学学报(信息科学版),2009,27(6):652-657. 被引量:11
  • 8Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C] //Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2005:886-893.
  • 9Munder S,Gavrila D M.An Experimental Study on Pedestrian Classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(11):1863-1868.
  • 10Laptev I.Improvements of Object Detection Using Boosted Histograms[C] //Proceedings British Machine Vision Conference.Boston:Butterworth-Heinemann,2006:949-958.

二级参考文献57

共引文献45

同被引文献54

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部