期刊文献+

面向对象的高空间分辨率影像分类研究 被引量:5

HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE CLASSIFICATION BASED ON OBJECT-ORIENTED MULTI-FEATURES
原文传递
导出
摘要 采用面向对象遥感影像分类方法,进行了高空间分辨率遥感影像信息提取试验,分析了其与基于像元方法的信息提取结果的差异,试验研究表明,在目视效果上,传统方法的分类结果图中椒盐现象非常明显,而面向对象方法可以有效地避免椒盐现象;在分类精度上,面向对象方法分类结果的总体精度、Kappa系数、生产者精度、用户精度、Hellden精度和Short精度均明显高于传统方法,各类地物提取效果显著提高。面向对象方法在高空间分辨率遥感影像信息提取中具有明显的优势。 The object-oriented classification method was used to extract land use/land cover information from high spatial resolution remote sensing images,and the results were compared with the traditional information extraction method.The classification results were easier to understand and interpretative.Overall precision,Kappa,producer precision,user precision,Hellden precision and Short precision of object-oriented classification are better than that of traditional classification method.These experiments show that the object-oriented method is superior to traditional method in high resolution remote sensing information extraction.
出处 《测绘信息与工程》 2010年第3期3-5,共3页 Journal of Geomatics
基金 国家自然科学基金资助项目(50534050) 国家自然科学基金资助项目(50774080)
关键词 面向对象 多尺度分割 最优尺度 object-oriented multi-scale segmentation optimal scale
作者简介 张俊,硕士,主要从事遥感图像处理与应用研究。E—mail:zjaust@163.com
  • 相关文献

参考文献5

二级参考文献22

  • 1[1]Atkinson P M, Tatnall A R L. Neural Networks in Remote Sensing. International Journal of Remote Sensing, 1997,18(4): 699~709
  • 2[2]Borak J, Strahler A H. Feature Selection and Land Cover Classification of a MODIS-like Data Set for a Semiarid Environment. International Journal of Remote Sensing, 1999,20(5): 919~938
  • 3[3]Chen S, Zhao Y. Geo-Science Analysis of Remote Sensing.Beijing:The Publishing House of Surveying and Mapping, 1989
  • 4[4]Kok R D, Buck A, Schneider T. Analysis of Image Objects from VHR Imagery for Forest GIS Updating in the Bavarian Alps, Geoinformation for All. The 19th Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Amsterdam, 2000
  • 5[5]Krawitz L. Earth Resources Program Scope and Information Needs. NASA-CR-141767, General Electric Co., Philadelphia,1974
  • 6[6]Lindenlaub J C, Davis S M. Applying the Quantitative Approach. In: Davis S M (eds). Remote Sensing: The Quantitative Approach. New York:McGraw-Hill Inc,1978
  • 7[7]Muchoney D. Application of the MODIS Global Supervised Classification Model to Vegetation and Land Cover Mapping of Central America. International Journal of Remote Sensing, 2000,21(6/7): 1 115~1 138
  • 8[8]Paila J D, Schowengerdt R A. A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely-sensed Multi-spectral Imagery. International Journal of Remote Sensing, 1995,16(16): 3 033~3 058
  • 9[9]Willhauck G. Comparison of Object Oriented Classification Techniques and Standard Image Analysis for the Use of Change Detection Between SPOT Multispectral Satellite Images and Aerial Photos. The 19th Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Amsterdam, 2000
  • 10Blaschke T, Strobl J. What' s wrong with pixels? Some recent developments interfacing remote sensing and GIS [J]. GIS-Zeitschrifi fur Geoinformations systeme, 2001, 6: 12-17.

共引文献130

同被引文献40

引证文献5

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部