期刊文献+

EXISTENCE AND NONEXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS IN EXTERIOR DOMAINS 被引量:1

EXISTENCE AND NONEXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS IN EXTERIOR DOMAINS
在线阅读 下载PDF
导出
摘要 This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2. This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期713-725,共13页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundations of China(10971061) Hunan Provincial Natural Science Foundation of China (09JJ6013)
关键词 Degenerate parabolic equations exterior domains -inhomogeneous dirichlet boundary conditions critical exponent BLOW-UP global existence Degenerate parabolic equations exterior domains -inhomogeneous dirichlet boundary conditions critical exponent blow-up global existence
作者简介 E-mail:zxzh217@sohu.com;xzzeng@hnust.edu.cn
  • 相关文献

参考文献20

  • 1Andreucci D, Teedev A F. A Fujita type result for a degenerate Neumann problem with non compact boundary. J Math Anal Appl, 1999, 231:543-567.
  • 2Bandle C, Levine H A, Zhang Q S. Critical exponents of Fij!ta type for inhomogeneous parabolic equations and systems. J Math Anal Appl, 2000, 251:624-648.
  • 3Deng K, Levine H A. The role of critical exponents in blow-up theorems: The sequel. J Math Anal Appl, 2000, 243:85-126.
  • 4Fujita H. On the blowing up of solutions of the Cauchy problem for ut =Δku + u^1+σ. J Fac Sci Univ Tokyo Sect I, 1966, 13:109-124.
  • 5Galaktionov V A. On conditions for there to be no global solutions of a class of quasilinear parabolic equations. USSR Comp Math and Math Phys, 1982, 22:73-90.
  • 6Galaktionov V A. Blow-up for quasi-linear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124:517-525.
  • 7Hayakawa K. On the nonexistence of global solutions of some semilinear parabolic differential equations. Proc Japan Acad, 1973, 49:503-525.
  • 8Kobayashi K, Sirao T, Tanaka H. On the blowing up problem for semilinear heat equations. J Math Soc Japan, 1977, 29:407-424.
  • 9Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32:262-288.
  • 10Liu X F, Wang M X. The critical exponent of doubly singular parabolic equations. J Math Anal Appl, 2001, 257:170-188.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部