期刊文献+

TGARCH模型预测高炉铁水硅质量分数 被引量:3

Prediction of silicon content in blast furnace hot metal based on TGARCH model
在线阅读 下载PDF
导出
摘要 为了更好地反映高炉铁水硅质量分数序列的高波动特性,利用门限广义自回归条件异方差(TGARCH)模型对硅质量分数序列进行预测.应用Portmantea Q检验、拉格朗日乘子检验以及非对称项系数显著性检验,验证了高炉铁水硅质量分数序列存在异方差性和非对称性.在此基础上将TGARCH模型应用于高炉铁水硅质量分数预测,采用极大似然估计法确定参数,建立TGARCH(1,1,1)预测模型,并采用命中率和误差率2种评价准则对预测结果进行分析.这种方法克服了以往模型没有考虑序列非对称性影响的缺陷,更加适合于高炉铁水硅质量分数的预测.将预测模型应用于包钢6号高炉,取得了较好的预测效果. In order to account for the high volatility of silicon content in blast furnace hot metal,threshold generalized autoregressive conditional heteroskedastic (TGARCH) model was used to construct a predictive model for the time series of silicon content in hot metal.Portmantea Q test,Lagrange multiplier (LM) test and asymmetric test were applied to the silicon content series.It was proved that silicon content series exhibits ARCH and asymmetric effect,which validated the application of TGARCH model.A TGARCH (1,1,1) model was then adopted and the coefficients were estimated by maximum likelihood method.Two criteria,i.e.hit rate and error rate,were used to evaluate the performance of the model.This approach takes the asymmetric effect as well as ARCH effect of silicon content into account and is more appropriate for prediction of silicon content in hot metal.Data collected from No.6 blast furnace of Baotou Iron Steel Corporation were used to test the identified model and good results were achieved.
机构地区 浙江大学数学系
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期696-699,731,共5页 Journal of Zhejiang University:Engineering Science
基金 国家科技部重点推广计划资助项目(2005EC000166) 国家发改委高技术产业化示范工程资助项目(发改高技[2004]2080号) 国家自然科学基金资助项目(10826100) 浙江省自然科学基金资助项目(Y107110) 高等学校博士点科研基金资助项目(20070335161) 浙江大学控制技术国家重点实验室开放课题资助项目(ICT0904)
关键词 异方差效应 非对称效应 TGARCH 硅含量 时间序列 ARCH effect asymmetry effect TGARCH silicon content time series
作者简介 潘伟(1985-),男,浙江杭州人,博士生,从事系统优化与控制研究.Email:panwei168@gmail.com 通信联系人:刘祥官,男,教授,博导.Email:xgliu@zju.edu.cn
  • 相关文献

参考文献11

  • 1王玉涛,严其艳,杨钢,徐万仁.高炉铁水含硅量的动态神经网络多步预报[J].仪器仪表学报,2006,27(11):1448-1451. 被引量:7
  • 2ZHAO Min, LIU Xiang guan, LUO Shi-hua. An evolutionary artificial neural networks approach for BF hot metal silicon content prediction [C]// Proceedings of International Conference on Natural Computation. Berlin: Springer-Verlag, 2005:433-436.
  • 3ZAKOIAN J M. Threshold heteroskedastic models [J]. Journal of Economic Dynamics and Control, 1994, 18 (5) : 931 - 944.
  • 4TSAY R S.金融时间序列分析[M].潘家柱,译.北京:机械工业出版社,2007:61-97.
  • 5ENGLE R F. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation [J]. Econometrica, 1982, 50(4): 987 - 1007.
  • 6BOLLERSLEY T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(2): 307-327.
  • 7NELSON D B. Conditional heteroskedasticity in asset returns: a new approach [J]. Econometrica, 1991, 59 (2) : 347 - 370.
  • 8谢赤,禹湘,储慧斌.基于TGARCH模型的证券投资惯性反向交易策略实证研究[J].管理科学,2007,20(3):68-75. 被引量:10
  • 9余帆,沈炯,刘西陲.基于自回归条件异方差-反向传播网络模型的日前边际电价预测[J].电网技术,2008,32(8):63-66. 被引量:9
  • 10王燕.应用时间序列[M].北京:中国人民大学出版社,2005.

二级参考文献38

  • 1李郁侠,赵军科,段凌剑,高福荣.混沌理论和快速BP神经网络在边际电价预测中的应用[J].武汉大学学报(工学版),2005,38(6):77-81. 被引量:8
  • 2杨湘豫,周屏.GARCH模型在开放式基金中的实证研究[J].系统工程,2006,24(4):73-76. 被引量:17
  • 3Martin Hagan Howard B Demuth.Neural network design[M].北京:机械工业出版社,2002..
  • 4WANG Y, ZHOU J, WANG S. A hybrid neural network model for predicting silicon content [J]. Elcktrotechnik und Informationsetechnik, 2000, 117 ( 1 ):18-23.
  • 5KIKUCH S. Recurrent neural network with short-term memory and fast structure learning method [J]. Systems and Computers in Japan,2003,34(6) :69-79.
  • 6PHAM D T, LIU X. Training of elman networks and dynamic system modeling [J]. International Journal of System Science, 1996,27(2) :221-226.
  • 7ZHANG J, MARTIN E, MORRIS A. Fault detection and diagnosis using multivariate statistical techniques[J]. Chemical Engineering, 1996,74:181-189.
  • 8PEARLMUTTER B A. Gradient calculations for dynamic recurrent neural networks: a survey [J]. IEEE Transactions on Neural Networks, 1995, 6 (5):1212-1228.
  • 9ROTHKRANTZ L J M. Speech recognition using elman neural networks [J]. Lecture Notes in Computer Science, 1999,1692 :146-151.
  • 10KREMER S C. On the computational power of Elmanstyle recurrent networks [J]. IEEE Transactions on Neural Networks, 1995,6(4):1000-1004.

共引文献28

同被引文献38

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部