期刊文献+

基于主分量特征与独立分量特征的人脸识别 被引量:5

Face Recognition Based On Principal Components And Independent Components
在线阅读 下载PDF
导出
摘要 PCA方法抽取出的主分量特征与ICA方法抽取出的独立分量特征是对原数据的两类不同描述.PCA是一种基于二阶统计的最小均方误差意义上的最优维数压缩技术,PCA方法所抽取特征的各分量之间是统计不相关的.ICA方法使用数据的二阶和高阶信息抽取数据的独立分量特征.文章对这两种方法做了理论上的比较,并通过实验证明ICA算法提取的特征子空间在人脸识别应用中更有效,识别率更高. The two kinds of features extracted by PCA and ICA represent data are from different points of view. PCA (principal component analysis) is the optimal dimension compression technique based on second--order information, in the sense of mean-square error. Features extracted by PCA are statistically uncorrelated to each other. ICA (independent component analysis) extracts features for data using their second--order and higher--order information. Compared with PCA,the independent components of ICA are both nongaussian and statistically independent. ICA base on higher--order statistics has shown great promising ability in image feature extraction and image compression.
作者 贾莹 段玉波
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第2期180-182,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 主分量分析(PCA) 独立分量分析(ICA) 人脸识别 PCA ICA face recognition
作者简介 贾莹(1985-),女,硕士研究生,研究方向;油气信号与信息工程.
  • 相关文献

参考文献3

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:108
  • 2Aapo Hyvarinen.独立成分分析[M].周宗潭,译.北京:电子工业出版社,2007.
  • 3Jeffrey Ng,Anil A.Bharath,and Li Zhaoping.A Survey of Architecture and Function of the Primary Visual Cortex(V1)[J].EURASIP Journal on Advances in Signal Processing,2007.

二级参考文献60

  • 1Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003, 35(4):399-458
  • 2Phillips P J, Grother P, Micheals R J, Blackburn D M, Tabassi E, Bone J M. Face Recognition Vendor Test 2002: Evaluation Report. 2003. http://www.frvt. org/FRVT2002/documents. htm
  • 3Daugman J. Face and Gesture Recognition: Overview. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 675-676
  • 4Phillips P J, Wechsler H, Huang J, Rauss P. The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing Journal, 1998, 16(5): 295-306
  • 5Yang M H, Kriegman D J, Ahuja N. Detecting Faces in Images:A Survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58
  • 6Brunelli R, Poggio T. Face Recognition: Features Versus Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 7Bledsoe W. Man-Machine Facial Recognition. Technical Report, PRI:22, Panoramic Research Inc., Palo Alto, USA, 1966
  • 8Kanade T. Computer Recognition of Human Faces. Ph. D Dissertation. Kyoto University, Japan, 1974
  • 9Samal A, Iyengar P A. Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey. Pattern Recognition, 1992, 25(1): 65-77
  • 10Nefian A V, Hayes M H. Hidden Markov Models for Face Recognition. In:Proc of the IEEE International Conference on Acoustics Speech and Signals Process. Seattle, USA, 1998, Ⅴ: 2721-2724

共引文献110

同被引文献17

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部