期刊文献+

New Heuristic Rounding Approaches to the Quadratic Assignment Problem

New Heuristic Rounding Approaches to the Quadratic Assignment Problem
在线阅读 下载PDF
导出
出处 《通讯和计算机(中英文版)》 2010年第4期15-18,共4页 Journal of Communication and Computer
关键词 二次分配问题 四舍五入 启发式方法 计算机科学 组合优化 优化模型 最佳参数 运筹学 Quadratic assignment problem, quadratic programming, integer programming, rounding approach.
作者简介 Corresponding author: Wajeb Gharibi, associate professor, Ph.D., research fields: computer science and operations research. E-mail: gharibiw2002@yahoo.com. Yong Xia,assistant professor, Ph.D., research fields: optimization.
  • 相关文献

参考文献10

  • 1K.M. Anstreicher, Recent advances in the solution of quadratic assignment problems, Math-ematical Programming Ser. B 97 (2003) 24-42.
  • 2R.E. Burkard, E.C. Cela, P.M. Pardalos, L.S. Pitsoulis, The quadratic assignment problem, in: D.Z. Du, P.M. Pardalos, Eds., Handbook of Combinatorial Optimization, Volume 3, Kluwer Academic Publishers, Dordrecht, 1998, pp. 241-337.
  • 3E.C. Cela, The Quadratic Assignment Problem: Theory and Algorithms, Kluwer Academic Publishers, Dordrecht, 1998.
  • 4E.M. Loiola, N.M.M. Abreu, P.O. Boaventura-Netto, P. Hahn, T. Querido, An an-alytical survey for the quadratic assignment problem, European Journal of Operational Research.
  • 5P.M. Pardalos, F. Rendl, H. Wolkowicz, The quadratic assignment problem: a survey and recent developments, in P.M. Pardalos, H. Wolkowicz, Eds., Quadratic Assignment and Related Problems, DIMACS Series in Discrete Mathematics and Theoret-ical Computer Science, AMS, Rhode Island, 16, 1994, pp. 1-42.
  • 6V.D. Cung, T. Mautor, P. Michelon, A. Tavares, A scatter search based approach for the quadratic assignment problem, in: T. BAack, Z. Michalewicz, X. Yao, Eds., Proceedings of IEEE-ICEC-EPS'97, IEEE International Conference on Evolutionary Computation and Evolutionary Programming Conference, Indianapolis, 1997, pp. 165-170.
  • 7K.M. Ng, A continuation approach for solving nonlinear optimization problems with discrete variables, PhD thesis, Stanford University, 2002.
  • 8B.A. Murtagh, T.R. Jererson, V. Sornprasit, A heuristic procedure for solving the quadratic assignment problem, European Journal of Operational Research 9 (1982) 71-76.
  • 9S.W. Hadley, F. Rendl, H. Wolkowicz, A new lower bound via projection for the quadratic assignment problem, Math.Oper.Res. 17 (1992) 727-739.
  • 10R.E. Burkard, S.E. Karisch, F. Rendl, QAPLAB-a quadratic assignment problem library, J. Global Optim (1997) 391-403. available online at: www.opt.math.tugraz.ac.at/-qaplab.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部