摘要
光纤陀螺随机误差的功率谱密度分别与频率的γ次方成反比,这类随机过程统称为1/fγ分形噪声,研究生成这类信号的方法对分析光纤陀螺的输出信号具有重要意义。分形噪声具有非平稳性、长程相关性、自相似性及1/fγ谱密度的特性,小波变换的多分辨分析是研究1/fγ噪声的良好工具。通过对高斯白噪声进行小波变换,再结合1/fγ噪声的方差特性,找到了满足1/fγ信号生成定理的各尺度正交小波系数,最后采用正交小波逆变换模拟出分形噪声,此方法可以产生任意噪声强度σ2、任意谱参数γ的1/fγ噪声。
The power spectrum density of random noise of Fiber Optic Gyroscope(FOG) is inversely proportional to frequency's power,and the random process was called 1/f^γfractal noise.The study on method for generating 1/f^γnoise is very important for analyzing FOG's output signals.Fractal noise has the characteristics of nonstationarity,long-term correlation,self-similarity and 1/f^γspectral density with 1/f^γpower law.The multi-resolution analysis of wavelet is a powerful tool for studying fractal noises.The wavelet is transformed by Gauss white noise firstly,then combing with the variance characteristics of 1/f^γnoise,it is found that the orthonormal wavelet coefficient collection can satisfy the 1/f^γnoise synthesis theory.The fractal noise is then simulated by using inverse orthonormal wavelet transform.The result proves that 1/f^γnoise with any given amplitude and γ value within the limitation of wavelet regularity can be generated in this way.
出处
《电光与控制》
北大核心
2010年第5期50-53,共4页
Electronics Optics & Control
基金
国家高新技术"八六三"研究发展计划资助项目(2007AA04Z436)
作者简介
陈婧(1985-),女,山西大同人,硕士生,研究方向为光纤陀螺及其系统研究。