期刊文献+

大气压微等离子体放电特性研究 被引量:4

Electrical Characteristics of Atmospheric Pressure Microplasma Discharge
在线阅读 下载PDF
导出
摘要 通过减小电极孔径到微米量级来实现高气压甚至大气压放电的现象已成为研究热点。笔者利用不锈钢空心针作为放电阴极,不锈钢网作阳极,进行了大气压微等离子体放电实验研究。实验测量了大气压微放电的伏安特性曲线。实验发现,大气压直流微放电存在不同的放电模式:空心阴极放电和反常辉光放电,随着电流的增加,放电越来越强烈。实验研究了放电电压随压强和气体流量的变化关系。结果显示,随着体系压强的增加,电离过程增多,放电电压逐渐降低。随着流量的增加,气体流动状态由层流状态逐渐过渡到紊流状态,引起放电电压先降低后增加。 An atmospheric pressure argon direct current microplasma discharge apparatus was built using a stainless steel capillary as the cathode, a stainless steel mesh as the anode. The voltage-current characteristics were incasured, and different modes of discharge, hollow cathode discharge and abnormal glow discharge, were observed. It is shown that the voltage-current characteristic is similar to the known characteristic of low pressure glow discharge. The dependences of discharge voltage on gas pressure and argon flow rate were investigated. The experimental results show that the discharge voltage decreases when the gas pressure increases, and the dependence of discharge voltage on gas flow rate exhibits different characteristics i.e. discharge voltage decreases first with gas flow rate, and then increases.
出处 《高压电器》 CAS CSCD 北大核心 2010年第5期18-21,共4页 High Voltage Apparatus
基金 国家自然科学基金(60907041) 重庆邮电大学博士启动基金(A2009-21)
关键词 微等离子体 伏安特性 大气压 microplasma current-voltage characteristic atmospheric pressure
作者简介 郑培超(1980-),男,博士,研究方向为大气压辉光放电及应用。
  • 相关文献

参考文献22

  • 1FRIDMAN A, CHIROKOV A,GUTSOL A. Nonthermal Atmospheric Pressure Discharges[J] J. Phys. D: Appl. Phys.,2005,38(2): 1"24.
  • 2李成榕,王新新.大气压下的辉光放电[J].高电压技术,2002,28(B12):41-43. 被引量:30
  • 3郑培超,王鸿梅,李建权,韩海燕,徐国华,沈成银,储焰南.大气压直流微等离子体射流研究[J].光谱学与光谱分析,2009,29(2):289-292. 被引量:8
  • 4STAACK D, FAROUK B, GUTSOL A, et al. Characterization of a DC Atmospheric Pressure Normal Glow Discharge [J]. Plasma Sources Sci. Teehnol., 2005,14(4):700-711.
  • 5SCHOENBACH K H, VERHAPPEN R, TESSNOW T, et al. Microhollow Cathode Discharges [J]. Appl. Phys. Lett, 1996, 68 (1): 13-15.
  • 6KURUNCZI P, LOPEZ J, SHAH H, et al. Excimer Formation in High-pressure Microhollow Cathode Discharge Plasmas in Helium Initiated by Low-energy Electron Collisions [J]. Int. J. Mass Spectrom 2001, 205(1-3): 277-283.
  • 7MOSELHY M, STARK R H, SCHOENBACH K H, et al. Resonant Energy Transfer from Argon Dimers to Atomic Oxygen in Microhollow Cathode Discharges [J]. Appl. Phys. Lett, 2001, 78 (7): 880-882.
  • 8PARK S J, EDEN J G. 13-30 Micron Diameter Microdischarge Devices: Atomic Ion and Molecular Emission at above Atmospheric Pressures[J]. Appl. Phys. Lett, 2002, 81 (22): 4 127-4 129.
  • 9郑培超,王鸿梅,李建权,韩海燕,徐国华,沈成银,储焰南.大气压氩直流微放电光谱研究[J].光谱学与光谱分析,2008,28(10):2224-2227. 被引量:9
  • 10PARK K W, LEE T I,HWANG H S, et al. Formation of Stable Direct Current Microhollow Cathode Discharge by Ventufi Gas Flow System for Remote Plasma Source in Atmosphere [J]. Appl. Phys. Lett, 2008, 92(3): 61-68.

二级参考文献44

  • 1刘书华,毛志国,李树锋,冉俊霞,董丽芳.大气压氩气放电六边形斑图的电子激发温度研究[J].光谱学与光谱分析,2006,26(2):228-230. 被引量:3
  • 2严建华,屠昕,马增益,潘新潮,岑可法,Cheron Bruno.大气压直流氩等离子体射流工作特性研究[J].物理学报,2006,55(7):3451-3457. 被引量:18
  • 3Staack D, Farouk B, Gutsol A, et al. Plasma Sources Sci. Technol. , 2005, 14(4) : 700.
  • 4Kothnur P S, Raja L L. J. Appl. Phys. , 2005, 97(4): 043305.
  • 5Schoenbach K H, Verhappen R, Tessnow T, et al. Appl. Phys. Lett. , 1996, 68(1).. 13.
  • 6Panikov N S, Paduraru S, Crowe R, et al. IEEE Trans. Plasma Sci. , 2002, 30(4) : 1424.
  • 7Moselhy M, Schoenbach K H. J. Appl. Phys. , 2004, 95(4): 1642.
  • 8Koinuma H, Ohkubo H, Hashimoto T, et al. Appl. Phys. Lett. , 1992, 60(7), 816.
  • 9Kikuchi T, Hasegawa Y, Shirai H. J. Phys. D: Appl. Phys. , 2004, 37(11): 1537.
  • 10Zhang J L, Sun J, Wang DZ, et al. Thin Solid Films, 2006, 506: 404.

共引文献43

同被引文献133

  • 1吴旭琴,王守国,韩黎,赵玲利,常啸,陈耕,索继江,邢玉斌,陈世平.常压低温等离子体对微生物的杀灭研究[J].微生物学报,2005,45(2):312-314. 被引量:23
  • 2邵建设,严萍,袁伟群.大气压空气中同轴介质阻挡放电微放电特性[J].高电压技术,2006,32(10):65-68. 被引量:12
  • 3LAROUSSI M,HYNES W,AKAN T,et al. The plasma pencil: A source of hypersonic cold plasma bullets for biomedical applications[J]. IEEE Trans. on Plasma Sci., 2008(36): 1298.
  • 4VASILETS G N,POLYM A P. Applied plasma medicine[J]. Plasma Processes Polym., 2008(5):503.
  • 5WILKE K C,WOEDTKE T V. Atmospheric pressure plasma jet for medical therapy: Plasma parameters and risk estimation, Contrib[J]. Plasma Physics, 2009(49):631.
  • 6MORFILL G J. Zimmermann,plasma health care-old problems, new solutions,contrib[J]. Plasma Physics ,2012(52):655.
  • 7XU Xu, OU Qiong-rong,SHU Xing-sheng. Three modes of the electrical characteristics of dielectric barrier discharge at atmospheric pressure[J]. High Voltage Technology,2006, 32(1):63-64.
  • 8MERICAM-BOURDET N A,KARAKAS E. Experi-mental investigations of plasma bullets[J]. Journal of Physics D- Applied Physics, 2009,42(5):055207.
  • 9LI Q,LI J T,ZHU W C,et al. Effects on gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets[J]. Applied Physics Letters, 2009,95(14): 141502-1-141502-3.
  • 10JIANG N,JI A,CAO Z. Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup[J]. Journal of Applied Physics,2010, 108(3): 033302-1-033302-5.

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部