期刊文献+

基于改进型LBP特征的运动阴影去除算法 被引量:8

Moving Shadow Removal Based on Improved LBP Features
在线阅读 下载PDF
导出
摘要 在局部二值模式(LBP)基础上,运用一种改进的局部三值模式(LTP)纹理特征提取方法。并把这种提取方法运用到运动阴影去除中。该方法首先利用自适应高斯混合模型进行背景建模,得到背景和含有阴影的前景目标;并用亮度属性得到疑似阴影分块,然后再把疑似阴影区域和已获取背景相应位置的LTP纹理相似性进行判断;最后得到准确的阴影区域并实现阴影去除。实验结果表明,该算法能够很好地抑制分割噪声,准确地去除出运动阴影,具有较好的实验效果。 Based on the local binary patterns, a new improved method for extract local texture is introduced, namely local ternary patterns. This extraction method can be used to remove the shadow of movement. The background is modeled with adaptive gaussian mixture models, to get the background and foreground object. Then the intensity property is used to obtain the probable-shadow blocks. The shadow detected is improved based on the similarity of texture represented by LTP between shadow region and corresponding region in the background. Finally, the shadow can be removed accurately. The experimental results show that the algorithm can inhibit partition noise, and accurately remove the shadow of the movement.
出处 《计算机系统应用》 2010年第5期80-83,共4页 Computer Systems & Applications
基金 国家自然科学基金(60772071) 浙江省科技计划(2008C14063)
关键词 纹理特征 混合高斯模型 局部二值模式(LBP) 阴影去除 texture features Gaussian mixture models local ternary patterns shadow removal
  • 相关文献

参考文献8

  • 1Leone A,Distante C,Buccolierif.A texture-based approach for shadow detection IEEE Conference on Advanced Video and Signal Based Surveillance.Washingtorr IEEE,2005.371 -376.
  • 2Mikic I,Cosman P,Kogut G,Trivedi MM.Moving shadow and object detection in traffic scenes.Proc.of International Conferernce on Pattern Recognition,Sept 2000.
  • 3Heikkilam,Pietikanen M.A texture-based method form odeling the background and detecting moving object.IEEE Trans Pattern Analysis and Machine Intelligence,2006,28(4):657-662.
  • 4李斌,程义民,张玲.基于纹理的运动目标检测[J].计算机工程与应用,2008,44(7):100-102. 被引量:9
  • 5Xiao H,Xu CY,Prince JL.A topology preserving level setmethod for geometric deformable models.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):755-767.
  • 6Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking.Proc,IEEE Confer-ence on Computer Vision and Pattern Recognition,Fort Collins,Colorado,1999,2:246-252.
  • 7朱碧婷,郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法[J].中国图象图形学报,2008,13(10):1906-1909. 被引量:21
  • 8http://cvrr.ucsd.edu/aton/shadow,May 2009.

二级参考文献13

  • 1Wren C R,Azarbayejani A,Darrell T,et al.Real-time tracking of the human body[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7 ) :750-755.
  • 2Friedman N,Russell S.Image segmentation in video sequences:a probabilistic approach[C]//Proc of Conference Uncertainty in Artificial Intelligence, 1997 : 175-181.
  • 3Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]//Proc of International Conference Pattern Recognition, 2004,2 : 28-31.
  • 4Matsuyama T,Ohya T,Habe H.Background subtraction for non-stationary scenes[C]//Proc Asian Conference Computer Vision,2000: 622-667.
  • 5Mason M,Duric Z.Using histograms to detect and track objects in color video[C]//Proc of Applied Imagery Pattern Recognition Workshop, 2001 : 154-159.
  • 6Heikkila M,Pietikainen M,Heikkila J.A texture-based method for modeling the background detecting moving objects[J],IEEE Trans Pattern Analysis and Machine Intelligence,2006,28(4):657-662.
  • 7Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Trans Pattern Analysis and Machine Intelligence,2002,24, 7:971-987.
  • 8Brodatz P.Texture:a photographic album for artists and designers[M]. New York : Dover, 1996.
  • 9Stauffer C,Crimson W E L.Adaptive backg round mixture models for real-time tracking[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition,1999,2:246-252.
  • 10Chris Stauffer,Grimson W E L. Adaptive background mixture models for real-time tracking [ A ]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ], Ft. Collins, CO, USA,1999:246 -252.

共引文献28

同被引文献47

  • 1陈延涛,熊运余,唐飞,杨璇,李鹏宏.基于区域统计及YUV色度特性的阴影消除[J].光电子.激光,2009,20(9):1218-1222. 被引量:1
  • 2王荣本,游峰,崔高健,郭烈.基于计算机视觉高速智能车辆的道路识别[J].计算机工程与应用,2004,40(26):18-21. 被引量:32
  • 3应卓瑜,邵亮,顾伟康,叶秀清.基于二维道路图像理解算法的阴影检测[J].电视技术,2004,28(10):78-80. 被引量:1
  • 4赵海坤,周伟灿.改进的OTSU算法在图像分割中的应用[J].重庆工学院学报,2007,21(7):92-94. 被引量:18
  • 5周家香,朱建军,张红亚.基于C1C2C3彩色不变特征的阴影检测与辐射恢复研究[J].工程勘察,2007,35(6):52-54. 被引量:5
  • 6MARTEL B N,ZACCARIN A. Moving cast shadow detection from a Gaussian mixture shadow model[ C]//Proc. Computer Vision and Pattern Recogni- tion. [ S. 1. ] :IEEE Press ,2005:643-648.
  • 7YE Jianhua, GAO Tao, ZHANG Jun. Moving object detection with back- ground subtraction and shadow removal[ C]//Proc. 2012 9th Internation- al Conference on Fuzzy Systems and Knowledge Discovery. Chengdu,Chi- na: IEEE Press ,2012 :1859-1863.
  • 8YUAN Chao, YANG Chenhui ,XU Zhiming. Simple vehicle detection with shadow removal at intersection [ C l//Proc. 2010 Second International Conference on Multimedia and Information Technology. Kaifeng, China: IEEE Press,2010 : 188-191.
  • 9PRATI A, MIKIC I, TRIVEDI M M, et al. Detecting moving shadows : al- gorithms and evaluation[ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2003,25 (7) :918-923.
  • 10OJALA T,PIETIKAINEN M.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部