期刊文献+

基于SIFT的宽基线立体影像最小二乘匹配方法 被引量:36

Least Squares Matching Methods for Wide Base-line Stereo Images Based on SIFT Features
在线阅读 下载PDF
导出
摘要 提出基于对极几何和单应映射双重约束的SIFT特征多尺度加权最小二乘匹配算法。算法首先基于特征点的空间分布和信息熵选取一定数量的最优SIFT特征点集,并采用基于奇异值分解(SVD)的SIFT特征匹配、基于SIFT特征尺度和方位信息的自适应归一化互相关(NCC)匹配获得精度较高的初始匹配点用于立体像对的基本矩阵和单应矩阵估计。然后在对极几何和单应映射的双重约束下,基于自适应NCC及距离加权的多尺度最小二乘匹配算法进行扩展匹配并同时保留匹配定位精度较高的原始SIFT特征点对。算法综合应用基于积分影像的NCC快速计算、金字塔影像匹配等方法和策略。最后选取实际的宽基线序列立体影像进行试验并同原始的SIFT特征匹配算法、基于SVD的SIFT算法进行了综合对比分析。结果表明当影像间无显著亮度变化时该方法的匹配性能明显优于现有的方法。 Some new feature extraction and matching algorithms(especially the Scale Invariant Feature Transformation algorithm,SIFT) that are invariant to translation,scale and rotation changes have been widely used in digital photogrammetry and computer vision fields.However,SIFT features are not invariant to affine deformation,and the location precision may be low because the feature extraction and matching are independent.In practical applications,this disadvantage makes it not appropriate for wide base line stereo matching.In order to solve this problem and to make it invariant to affine transformation,a new SIFT features' matching algorithm based on duplicate constraints and least squares image matching method was proposed in this paper.In this algorithm,the optimal SIFT features with good spatial distribution and large information content was first selected,then these SIFT features was matched by using SVD-SIFT algorithm and adaptive NCC matching method based on scale and orientation information of SIFT features.The fundamental and homography matrix can be estimated by using these initial correspondences.Other SIFT features were matched by using duplicate geometric constraint and weighted least squares matching with multiple scale template window.At the same time,the least squares matching results were selected accordingly.Further,compared to the location error of the original SIFT key points,least squares matching results were determined to adopted or not.Last,two wide base line image sequences were selected to test the performance of proposed algorithm.Test results indicate that the proposed method has higher performance than the original SIFT methods and the SVD based SIFT methods when no significant illumination changes between stereo image pairs.
出处 《测绘学报》 EI CSCD 北大核心 2010年第2期187-194,共8页 Acta Geodaetica et Cartographica Sinica
基金 地理空间信息工程国家测绘局重点实验室开放基金(200818)
关键词 尺度不变特征变换 特征提取 归一化互相关系数 单应映射 scale invariant feature transformation feature extraction normalized cross correlation homography mapping
作者简介 杨化超(1977-),男,副教授,博士生,主要研究方向为摄影测量与遥感。
  • 相关文献

参考文献12

  • 1MIKOLAJCZYK K, TUYTELAARS T, SCHMID C. A Comparison of Affine Region Detectors[J].International Journal of Computer Vision, 2005, 60(1): 163-186.
  • 2MIKOLAJCZYK K, SCHMID C. Scale & Affine Invariant Interest Point Detectors [J ]. International Journal of Computer Vision. 2004, 60(1): 63-86.
  • 3LOWE D. Distinctive Image Features from Scale invariant Keypoints[J].International Journal on Computer Vision. 2004, 60(2): 91-110.
  • 4MIKOLAJCZYK K, SCHMID C. A Performance Evaluation of Local Descriptors [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27 ( 10 ): 1615-1630.
  • 5陈尔学,李增元,田昕,李世明.尺度不变特征变换法在SAR影像匹配中的应用[J].自动化学报,2008,34(8):861-868. 被引量:24
  • 6李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 7DELPONTE E, ISGRO F, ODONE F. SVD-matching Using SIFT Features[C]//Special Issue on the Vision, Video and Graphics Conference. San Diego: Academic Press Professional Inc, 2005:415-431.
  • 8邓宝松,宋汉辰,杨冰,吴玲达.基于仿射迭代模型的特征点匹配算法[J].中国图象图形学报,2007,12(4):678-683. 被引量:8
  • 9LUONG Q T, DERICHE R, FAUGERAS O. On Determining the Fundamental Matrix: Analysis of Different Methods and Experimental Results[R]. Paris: INRIA, 1993:18 -94.
  • 10梁栋,童强,屈磊,王年,韦穗.一种基于极几何和单应约束的图像匹配算法[J].系统仿真学报,2006,18(1):44-46. 被引量:21

二级参考文献38

  • 1安如,王慧麟,徐大新,冯学智,周绍光,何凯.基于影像尺度空间表达与鲁棒Hausdorff距离的快速角点特征匹配方法[J].测绘学报,2005,34(2):101-107. 被引量:3
  • 2R Hartley,A Zisserman.Multiple view geometry in computer vision [M].Cambridge University Press,2000.
  • 3Z Zhang,R Deriche,O Faugeras.A robust technique for matching two uncalibrated images trought the unknown epipolar geometry [R].Report of research.France:INRIA,1994,2273.
  • 4C Harris,M Stephens.A combined corner and edge detector [C]//Proc.of 4th Alvey Vision Conf.Manchester.England.Manchester University Press,1988.189-192.
  • 5M Fischler,R Bolles.Random sample consensus:a paradign for model fitting with application to image analysis and automated cartography [J].Communications of the ACM,1981.24(6):381-395.
  • 6Q T Luong,R Deriche,O Faugeras.On determining the fundamental matrix:analysis of different methods and experimental results [R].Report of research.France:INRIA,1993,1894.
  • 7Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102.
  • 8Murray PTD. The development and comparison of robust methods for estimating the fundamental matrix. Int'l Journal of Computer Vision, 1996. 1-33.
  • 9Zhang ZY. Determining the epipolar geometry and its uncertainty: A review. Int'l Journal of Computer Vision, 1998,27(2):161-195.
  • 10Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM, 1981,24(6):381-395.

共引文献303

同被引文献350

引证文献36

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部