期刊文献+

无标度网络的群聚性对合作行为的影响 被引量:8

Effect of clustering in the scale-free networks on cooperative behavior
在线阅读 下载PDF
导出
摘要 通过仿真实验分析囚徒困境博弈在群聚性可变的无标度网络上的演化,进而考察无标度网络的群聚性对合作行为的影响.实验结果表明,无标度网络的群聚性对合作行为的影响依赖于度量个体博弈收益的效用函数.一方面,当效用函数考虑关系成本并以平均收益度量个体的博弈收益时,无标度网络的群聚性抑制合作行为.另一方面,当效用函数同时考虑关系成本和无标度网络中hub节点所具有的资源优势,并以平均收益和累积收益的加权平均度量个体的博弈收益时,随着累积收益权重的增大,无标度网络的群聚性对合作行为的影响逐渐由抑制作用转变为促进作用. Using simulation experiments, this paper analyzes the evolution of the prisoner' s dilemma game on scale-free networks with tunable clustering, and examines the effect of clustering in scale-free networks on the cooperative behavior. The results show that the effect of clustering in scale-free network on cooperative behavior depends on the utility function which is used to measure the gains of individuals in the game. On the one hand, when the cost of links is considered in the utility function, the gains of individual can be calculated with average payoff. In this case, the clustering in scale-free networks has negative effect on the evolution of cooperative behavior. On the other hand, when the cost of links and resource advantage of hub nodes are considered at the same time in the utility function, the gains of individuals can be calculated with the weighted average of average payoff and accumulated payoff. In this case, the negative effect of clustering in scale-free networks on cooperative be- havior changes gradually into the positive one with the increase of the weight of accumulated payoff.
出处 《系统工程学报》 CSCD 北大核心 2010年第2期152-158,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70571062)
关键词 无标度网络 群聚性 合作行为 效用函数 scale-free networks clustering cooperative behavior utility function
作者简介 谢逢洁(1974-),女,重庆人,博士生,研究方向:复杂网络及合作行为演化,Email:fengjie_xie@stu.xjtu.edu.cn; 崔文田(1958-),男,陕西米脂人,博士,教授,研究方向:复杂网络、组合优化; 孙笑明(1982-),男,辽宁大连人,博士生,研究方向:复杂组织网络.
  • 相关文献

参考文献19

  • 1Nowak M A. Five rules for the evolution of cooperation[J]. Science, 2006, 314(12) : 1560 - 1563.
  • 2Nowak M A, May R M. Evolutionary games and spatial chaos[J]. Nature, 1992, 359(10) : 826 -829.
  • 3Szabo G, Fath G. Evolutionary games on graphs[J]. Physics Reports, 20071 446(4) : 97 -216.
  • 4史定华.网络——探索复杂性的新途径[J].系统工程学报,2005,20(2):115-119. 被引量:24
  • 5Santos F C, Pacheco J M. Scale-free networks provide a unifying framework for the emergence of cooperation [ J ]. Physical Review Letter, 2005, 95(9): 275-278.
  • 6Santos F C, Pacheco J M, Lenaerts T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9) : 3490-3494.
  • 7Wu Z X, Guan J Y, Xu X J, et al. Evolutionary prisoner's dilemma game on Barabasi-Albert scale-free networks [ J ]. Physica A, 2007, 379(2): 672-680.
  • 8Tomassini M, Luthi L, Pestelacci E. Social dilemmas and cooperation in complex networks [ J ]. International Journal of Modern Physics C, 2007, 18 (7) : 1173 -1185.
  • 9Szolnoki A, Perc M, Danku Z. Towards effective payoffs in the prisoner' s dilemma game on scale-free networks [ J ]. Physica A, 2008, 387 (8) : 2075 - 2082.
  • 10Leslie L, Enea P, Marco T. Cooperation and community structure in social networks [ J ]. Physical A, 2008, 387 (4) : 955-966.

二级参考文献18

  • 1Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J]. Physica A, 2001, 299: 559-564.
  • 2Dorogovlsev S N, Goltsev A V, Mendes J F F. Pseudofractal scale-free web[J]. Physical Rev. E, 2002, 65: 066122.
  • 3Jung S, Kim S, Kahng B. A geometric growth model for scale-free networks[ EB/OD]. Los Alamos Archive cond-mat/0112361,2001.
  • 4Aiello W, Chung F, Lu L. Random evolution of massive graphs[Al. Abello J, Pardalos P M, Resende M G C. Handbook of Massive Data Sets[M]. Dordrecht: Kluwer, 2000. 97-122.
  • 5Molloy M, Reed B. The size of the giant component of a random graph with a given degree sequence[J]. Combinatorics, Probab.,Comput., 1998, 7: 295-305.
  • 6Itzkovitz S, Milo R, Kashtan N, et al. Subgraphs in random networks[J]. Physical Rev. E, 2003, 68: 026127.
  • 7Shi D H, Chen Q H, Liu L M. A Markov chain-based numerical method for degree distributions of growing networks[J]. Physical Rev. E, 2005, 71:036140.
  • 8I Bianeoni G. Numbers of cycles in off-equilibrium scale-free networks and in the Intemet at the autonomous system level[J]. Eur.Phys. J. B, 2004, 38: 223-230.
  • 9Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Review of Modem Physics, 2002, 74: 47-97.
  • 10INewman M E J. The structure and function of complex networks[J]. SIAM Rev. , 2003, 45: 167-256.

共引文献23

同被引文献107

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部