期刊文献+

基于CORDIC算法的双曲正余弦函数FPGA实现 被引量:10

FPGA implementation of hyperbolic function based on CORDIC algorithm
在线阅读 下载PDF
导出
摘要 作为一种快速精确进行超越函数运算的方法,坐标旋转数字计算(CORDIC)算法在现代工程实践中获得了广泛应用。本文简要介绍了该算法的基本原理,给出了具体的计算方法,并以双曲正余弦函数的求取为例,给出了CORDIC算法在FPGA中的实现方法,在集成综合环境(ISE)平台上进行了仿真。结果表明,由于采用了流水线结构,算法精度较高,实时性较好。另外,通过Matlab相应的算法进行了仿真,得出迭代次数和计算误差之间的关系曲线,有助于实际应用中选择迭代次数。 The application of CORDIC(COordinate Rotation DIgital Computing) arithmetic in solving transcendental function has become popular in modern engineering. A brief introduction of CORDIC arithmetic was given in this study. Taking the hyperbolic sine and cosine functions as examples, the method of realizing the arithmetic in FPGA was presented and simulated on ISE(Integrated Software Environment) platform. The result showed this arithmetic was of good precision and instantaneity because of using pipeline. This arithmetic has great practical value in some applications. In addition, a curve of the relationship between the iterative number and the error obtained by the Matlab simulation of the arithmetic can help designers planning the number of iterations for practical applications.
出处 《信息与电子工程》 2010年第2期211-214,共4页 information and electronic engineering
基金 中国工程物理研究院重大预研资助项目(重大预研-05)
关键词 CORDIC算法 双曲正弦函数 双曲余弦函数 现场可编程门阵列 流水线结构 COordinate Rotation Digital Computing arithmetic hyperbolic sine function hyperboliccosine function FPGA pipeline
作者简介 周晓青(1985-),女,四川绵阳人,在读硕士研究生,主要研究方向为通信与信息系统.email:zoe.in.rain@163.com. 李合生(1970-),男,四川巴中人,博士,研究员,主要从事雷达信号处理、雷达对抗、模式识别等研究. 陶荣辉(1969-),男,四川达州人,硕士,副研究员,主要从事雷达对抗、嵌入式系统研发. 蔡英武(1971-),男,四川乐山人,硕士,研究员,主要从事雷达信号处理及雷达对抗研究.
  • 相关文献

参考文献4

  • 1Volder J E.The CORDIC trigonometric computing technique[J].IRE Trans.Electronic Computers,1959,8(3):330-334.
  • 2Walther J S.A unified algorithm for elementary functions[C]// Proceedings of spring joint computer conference,1971,38:379-385.
  • 3Angarita F,Perez-Pascual A,Sansaloni T,et al.Efficient FPGA Implimentation of CORDIC algorithm for circular and linear coordinates[C]// Proceedings of International Conference on Field Programmable Logic and Applications.2005:535-538.
  • 4Hahn H,Timmermann D,Hosticka B J,et al.A Unified and Division-Free CORDIC Argument Reduction Method with Unlimited Convergence Domain Including Inverse Hyperbolic Function[J].IEEE Transactions on computers,1994,43(11):1339-1344.

同被引文献54

  • 1陈石平,李全,付佃华,段吉海.32位浮点正余弦函数的FPGA实现[J].微计算机信息,2008,24(5):176-178. 被引量:3
  • 2卢贵主.基于CORDIC算法的DDFS实现研究[J].厦门大学学报(自然科学版),2004,43(5):636-639. 被引量:7
  • 3Uwe Meyer-Baese.数字信号处理的FPGA实现[M].刘凌,译.2版.北京:清华大学出版社,2006.
  • 4Volder J E. The CORDIC trigonometric computing technique [J]. IRE Transactions on Electronic Computers,1959,8 (3): 330-334.
  • 5VOLDER J E. The CORDIC trigonometric computing tech- nique [J]. IRE Trans. on Electronic Computers, 1959, 8 (3) : 330-334.
  • 6John L Hennessy,David A Patterson. Computer Architecture:A Quantitative Approach[M]. 4th Ed. Singapore:ELSEVIER, 2007: 288-309.
  • 7Ma Y,Wanhammar L. A hardware efficient control of memory addressing for high performance FFT processors[J]. IEEE transactions on signal processing, 2000,48(3):917-921.
  • 8Abdellatif Bellaouar. Low-Power Direct Digital Frequency Synthesis for Wireless Communications[J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000,35(3):385-390.
  • 9ARM Inc. Cortex-A8 Technical Reference Manual[EB/OL]. (2010-05-07)[2010-06-15]. http://infocenter.arm.com/help/ topic/com.arm.doc.ddi0344k/DD10344K_cortex_a8 r3p2_trm.pdf.
  • 10Voider J E. The CORDIC trigonometric computing technique [J].IRE Trans. Electronic Computers, 1959,8, ( 3 ):330-334.

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部