期刊文献+

发芽条件及营养液对发芽糙米中γ-氨基丁酸含量的影响 被引量:15

Effects of Different Germinating Conditions and Nutritive Solution on the Content of Germinated Brown Rice
原文传递
导出
摘要 以糙米为原料,研究浸泡温度和时间对糙米吸水率的影响,发芽温度和时间对糙米发芽率和GABA含量的影响,同时分析pH值及不同营养液对发芽糙米中GABA含量的影响。结果表明:30℃下浸泡10h吸水率达到22%左右;在30℃下发芽24h,糙米发芽率高且出芽整齐,且糙米GABA含量高达515.21μg/g。在营养液pH为5.5时,发芽糙米GABA含量可达1330.90μg/g,Ca2+浓度在0.15mmol/L时,GABA含量可高达586.24μg/g。磷酸吡哆醛(PLP)浓度在2.0mmol/L时,发芽糙米GABA的含量可达543.14μg/g。VB6浸泡液在1.5mmol/L时,发芽糙米GABA含量为566.61μg/g。谷氨酸钠浓度为2.00mg/mL时,GABA含量达590.01μg/g。可见控制发芽条件以及选择合适的营养液,能有效调节糙米富集GABA。 In this paper, effects of soaking temperature and time on the water absorption of brown rice were studied. And, effects of germinating temperature and time on germinating rates and GABA content of germinated brown rice also studied. In the same time, effects of different nutritive solutions and pH on GABA content of germinated brown rice was analyzed. After soaked 10 h at 30℃, the water absorption reached 22%; and when brown rice were germinated 24 h at 30℃, higher germination rate and quality sp routs were obtained, GABA content was 515.21μg/g. GABA content of germinated brown rice was 1 330.90 ~tg/g at pH 5.5. When the concentration of Ca2+ reached 0. 15 mmol/L, GABA content was 586.24 μg/g in the germinated brown rice. GABA content of germinated was respectively 543.14 μg/g and 590.01 μg/g at PLP 2.0 mmol/L and VB6 1.5 mmol/L. Different from other nutritive solutions, effect of sodium glutamate on GABA content of germinated brown rice was not evident. It can be clearly see that the accumulation of GABA could be effectively regulated by controlling germination conditions and suitable nutritive solutions.
作者 邓宇
出处 《食品工业》 北大核心 2010年第2期79-82,共4页 The Food Industry
关键词 发芽 营养液 糙米 Γ-氨基丁酸 germinated nutritive solutions brown rice GABA
  • 相关文献

参考文献9

  • 1《谷物概论》编写组.谷物概论[M],中国财政经济出版社.1986.
  • 2王璋.食品酶学[M].北京:中国轻工业出版社,1997..
  • 3希杰株式会社.于提高大豆种子中γ-基丁酸含量的方法[P],韩国12005800242599,2007-06-27.
  • 4Streeter, L.G.,Thompson, J.F..Anaerobic Accumulation of γ-aminobutyric acid and Alanine in Radish Leaves. Plant Physiol.1972,49:572-578.
  • 5Wallance,W.,Secor J,Schrader,L.E..Rapid Accumulation of γ-aminobutyric acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature,Darkness or Mechanical Manipulation.Plant Physiol.1984,75:170-175.
  • 6Takayo Saikusa,Fukuyama,Yutaka Mori,Tsukuba, et al. γ-Aminobutyric Acid-enriched Food Material and Method for Producing γ-Aminobutyric Acid US5472730.
  • 7Arazi T.,Baum G.,Snedden W. A.,Shelp B. J.,and Fromm H..Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase,Plant Physiol.,1995,108(2):551-61.
  • 8Yevtushenko DP,McLean MD,Peiris S,Van Cauwenberghe OR,Shelp BJ Calcium/calmodulln activation of two divergent glutamate decarboxylases from tobacco,J. Exp.Bot.,2003,5 4:2001-2002.
  • 9Baum,G.,Lev-Yadum S.,Fr i dmann Y.,et al.Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. 1996, EMBO J., 15:2988-2996.

共引文献27

同被引文献226

引证文献15

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部