期刊文献+

基于支持向量机的财务危机预警模型 被引量:17

A Model Based on Support Vector Machine for Early Warning Financial Crisis
在线阅读 下载PDF
导出
摘要 首先利用因子分析、均值检验和相关性分析分别对财务指标和公司治理变量进行筛选,得到具有代表性的指标变量,然后利用支持向量机方法进行实证分析.研究结果表明,支持向量机模型对于企业破产风险有较强的预测能力.通过与财务指标下的模型结果进行比较,发现引入公司治理变量(流通股比例、第一大股东持股比例和股权集中度)后,模型的预测能力更强,该方法具有一定的实际应用价值. Financial indicators and corporate governance variables were sieved separately to get representative variables via factor analysis,mean value test and correlation analysis.Then,an empirical analysis was done by support vector machine(SVM).The results showed that the SVM model is superior in predicting the financial bankruptcy risk to other methods.Comparing the SVM model with the model based on financial indicators,it is found that the model introducing corporate governance variables in it is more predictable,where the variables include the proportions of circulating shares,shares held by the biggest shareholders and share ownership concentration.This method is worthy of practical applications to a certain extent.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期601-604,共4页 Journal of Northeastern University(Natural Science)
基金 教育部高等学校博士学科点专项科研基金资助项目(20060145001)
关键词 支持向量机 因子分析 财务危机 预警 公司治理 support vector machine(SVM) factor analysis financial crisis early warning corporate governance
作者简介 吴冬梅(1975-),女,辽宁沈阳人,东北大学博士研究生; 庄新田(1956~),男,吉林四平人,东北大学教授,博士生导师.
  • 相关文献

参考文献8

  • 1Beaver W H. Financial ratios as predictors of failure [ J ]. Journal of Accounting Research, 1966,4( 1 ) : 71 - 102.
  • 2Altman L. Financial ratios, discriminate analysis and prediction of corporate bankruptcy[J]. Journal ofFinance, 1968,23(9):589 - 609.
  • 3Ohlson J A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18 (1):109-131.
  • 4Zmijewski M E. Methodological issues related to the estimated of financial distress prediction models [ J ]. Journal of Accounting Research, 1984,22( 1 ) : 59 - 82.
  • 5Fan A, Palaniswami M. Selecting bankruptcy predictors using a support vector machine approach [ C] //Proceedings of the International Joint Conference on Neural Network. Como: IEEE-INNS-ENNS, 2000:345 - 352.
  • 6徐晓燕,王昱,张斌.一种集成logistic回归与支持向量机的判别分析规则[J].系统工程理论与实践,2007,27(4):41-46. 被引量:13
  • 7Tay F E H, Gao L. Application of support vector machines in financial time series forecasting [ J ]. Omega, 2001,29 ( 3 ) : 309 - 317.
  • 8林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143

二级参考文献26

  • 1张斌,华中生.一种改进的求解含等式约束凸二次规划问题的Lemke算法[J].中国科学技术大学学报,2004,34(6):668-677. 被引量:5
  • 2李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 3刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412. 被引量:90
  • 4LUNTS A,BRAILOVSKIY V.Evaluation of attributes obtained in Statistical Decision Rules[J].Engineering Cybemetics,1967(3):98-109.
  • 5CHAPELLE O,VAPINK V N.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159.
  • 6LUNTS A,BRAILOVSKIY V.Evaluation of attribtes obtained in statistical decision rules[J].Engineering Cybernetics,1967,3(1):982-1009.
  • 7MURPHY P M,AHA IRVINE D W.CA:University of california,department of information and computer science[EB/OL].http://www.ics.uci.edu/~mlearn/ MLRepository.html,1994.
  • 8KEERTHI S,CHIH J.Asymptotic behavior of support vector machines with gaussian kernel[J].Neural Computation,2003,15:1667-1689.
  • 9VAPINK V N.The nature of statistical learning theory[M].New York:Springer Verlag,2000.
  • 10De Andres J,Landajo M,Lorca P.Forecasting business profitability by using classification techniques:A comparative analysis based on a Spanish case[J].European Journal of Operational Research,2005,167:518-542.

共引文献153

同被引文献157

引证文献17

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部