期刊文献+

The Numerical Solution of the Nonlinear Poisson-Boltzmann Equation Under the Anisotropic Boundary Condition for Colloidal Plasmas 被引量:2

The Numerical Solution of the Nonlinear Poisson-Boltzmann Equation Under the Anisotropic Boundary Condition for Colloidal Plasmas
在线阅读 下载PDF
导出
摘要 Based on the model of the Wigner-Seitz cell, the surface potential of the spherical macroparticle (radius a) expands in terms of the monopole (q). A dipole (p) model is assumed for an anisotropic boundary condition of the nonlinear Poisson-Boltzmann equation. Using the finite element method implemented by the FlexPDE software, the potential distribution around the macroparticle is obtained for different ratios p/qa. The calculated results for the potential show that there is an attractive region in the vicinity of the macroparticle when Ip/qal〉l.1, and noticeably there is a potential well behind the macroparticle when Ip/qal=l.1, i.e., there exists both an attractive region and a repulsive region simultaneously. This means that the attractive interaction between macroparticles may arise from the anisotropic distribution of the surrounding plasmas, which well explains some experimental observations. Based on the model of the Wigner-Seitz cell, the surface potential of the spherical macroparticle (radius a) expands in terms of the monopole (q). A dipole (p) model is assumed for an anisotropic boundary condition of the nonlinear Poisson-Boltzmann equation. Using the finite element method implemented by the FlexPDE software, the potential distribution around the macroparticle is obtained for different ratios p/qa. The calculated results for the potential show that there is an attractive region in the vicinity of the macroparticle when Ip/qal〉l.1, and noticeably there is a potential well behind the macroparticle when Ip/qal=l.1, i.e., there exists both an attractive region and a repulsive region simultaneously. This means that the attractive interaction between macroparticles may arise from the anisotropic distribution of the surrounding plasmas, which well explains some experimental observations.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第2期134-138,共5页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China (No.50877033)
关键词 anisotropic distribution model of Wigner-Seitz cell finite element method potential well anisotropic distribution, model of Wigner-Seitz cell, finite element method, potential well
  • 相关文献

参考文献25

  • 1Chu J H, Lin I. 1994, Phys. Rev. Lett., 72:4009.
  • 2Thomas H, Morrill G E, Demmel V, et al. 1994, Phys Rev. Lett., 73:652.
  • 3Hayashi Y, Tachibana K. 1994, J. Appl. Phys., 33:L804.
  • 4Melzer A, Trottenberg T, Piel A. 1994, Phys. Lett. A 191:301.
  • 5Vladimirov S V, Nambu M. 1995, Phys. Rev. E, 52:R2172.
  • 6Nambu M, Vladimirov S V, Shukla P K. 1995, Phys. Lett. A, 203:40.
  • 7Takahashi K, Oishi T, Shimomai K I, et al. 1998, Phys. Rev. E, 58:7805.
  • 8Melzer A, Schweigert V A, Piel A. 1999, Phys. Rev. Lett., 83:3194.
  • 9Ishihara O, Vladimirov S V, Cramer N F. 2000, Phys. Rev. E, 61:7246.
  • 10Behrens S H, Grier D G. 2001, Phys. Rev. E, 64: 050401.

同被引文献11

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部