期刊文献+

基于图像最大熵的织物疵点检测方法 被引量:3

Detection Approach of Fabric Defect Based on the Maximum Entropy of Images
在线阅读 下载PDF
导出
摘要 对织物表面疵点自动识别方法进行了探讨。将信息熵引入图像处理中,先通过最大熵快速迭代算法对织物疵点区域进行分割,把疵点图像分为背景和目标两部分;然后找出疵点区域的中心并求出疵点区域在纬向和经向上的方差;最后通过两者的比值与设定常数的比较,判断出疵点类型。仿真实验表明该方法对常见织物疵点的检测是有效的。 It studied the automatic identifying approach of the fabric surface defects. The information entropy was introduced into the image processing, it segmented the region of the fabric defect by using the fast iterative algorithm of the maximum entropy, divid- ed the image into two parts which were the background and the objectives, then the center of the faults region was found out and the variance of zonal and warp in the faults region was determined, finally by comparing the ratio of the two parts with the predetermined constants, the type of defects was determined. Simulation experiment showed that this method is effective to detect common fabric defects.
作者 赵静 于凤芹
出处 《纺织科技进展》 CAS 2010年第2期64-65,69,共3页 Progress in Textile Science & Technology
关键词 织物疵点 信息熵 疵点自动识别 疵点检测 fabric defects information entropy defects automatic identification defect detection
作者简介 作者简介:赵静(1985-),女,硕士研究生在读,研究方向为图像处理。
  • 相关文献

参考文献4

  • 1王三武,祁林.织物疵点自动识别方法的研究及应用现状[J].纺织科技进展,2005(6):67-69. 被引量:5
  • 2Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674--693.
  • 3田浩,葛秀慧,王顶.数字图像处理原理及应用[M].北京:清华大学出版社,2007.
  • 4Wong A K C, Sahoo P K. A graylevel threshold selection method based on maximum entropy principle [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19 (4) : 866--871.

二级参考文献12

共引文献6

同被引文献40

  • 1钟小勇,姚桂国,梁金祥,左保齐.局部阈值分割用于织物疵点检测[J].江苏纺织,2009(9):54-55. 被引量:4
  • 2袁端磊,路立平,宋寅卯.织物疵点自动检测技术的研究进展[J].郑州轻工业学院学报(自然科学版),2005,20(3):69-73. 被引量:10
  • 3SRINIYASAN K, DASTOR P, RADHAKRISHNAIHAN P, et al. FDAS: a knowledge-based frame detection work for analysis of defects in woven textile structures[ J]. Journal of the Textile Institute, 1992, 83(3) : 431 -447.
  • 4何东健,耿楠,张义宽.数字图像处理[M].2版.西安电子科技大学出版社,2009:80-82.
  • 5OTSU N. A threshold selection method from gray-level histogram [ J ]. IEEE Trans System Man and Cybernetics, 1979, 9(1): 62-66.
  • 6刘纪红,王铖媛.一种基于自适应阈值的图像二值化算法[C]//2009中国控制与决策会议论文集(3).沈阳:《控制与决策》编辑委员会,2009:3958-3962.
  • 7KUMAR A. Computer-vision-based fabric defect detection: a survey[ J]. IEEE Transactions on Industrial Electronics, 2008, 55 ( 1 ) :348 - 363.
  • 8GUAN Shengqi, GAO Zhaoyuan. Fabric defect image segmentation based on visual attention mechanism of wavelet domain [ J]. Textile Research Journal, 2014, 84(10) :1018 - 1033.
  • 9NGAN H Y T, PANG G K H. Regularity analysis for patterned texture inspection [ J]. IEEE Transactions on Automation Science and Engineering, 2009, 6 ( 1 ) : 131 - 144.
  • 10JAYASHREE V, SHAILA Subbaraman. Identification of twill grey fabric defects using DC suppress Fourier power spectrum sum features [ J]. Textile Research Journal, 2012, 82(14) :1485 - 1488.

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部