摘要
利用自相似技术求解一个在强非局域非线性条件下的(2+1)维非线性薛定鄂方程,我们得到一个精确的库墨高斯(Kummer-Gass)解析解,结果表明,这种库墨高斯孤子可以形成一族空间孤子簇。数值模拟体现了空间孤子传输稳定性的特征。
We solve the two-dimensional(2D) strongly nonlocal nonlinear Schr? dinger equation(NNSE) in polar coordinates.An exact analytical solution of self-similar waves,namely Kummer-Gaussian soliton clusters,is obtained.Numerical simulations confirm the validity of the analytical solutions.
出处
《湖北师范学院学报(自然科学版)》
2010年第1期21-24,共4页
Journal of Hubei Normal University(Natural Science)
关键词
空间光孤子
自相似技术
强非局域非线性
optical spatial solitons
self-similar technology
strongly nonlocal nonlinearity
作者简介
徐四六(1969-),男,湖北通山人,讲师,博士生,研究方向为非线性光学.