期刊文献+

基于均值漂移和卡尔曼滤波的目标跟踪方法 被引量:9

Target Tracking Based on Mean-shift and Kalman Filter
在线阅读 下载PDF
导出
摘要 分析了Mean-shift难以有效跟踪复杂背景下灰度运动目标的主要缺陷,提出了结合Mean-shift和强跟踪滤波器的目标跟踪方法。该方法利用强跟踪滤波器预测目标在当前时刻的起始位置,然后Mean-shift在该位置的邻域内寻找目标所处位置。同时,采用Bhattacharyya系数度量"目标模型"和"候选模型"相似程度,提出一种目标遮挡因子,作为目标被遮挡程度的判断根据,并由此确定"候选模型"是否更换为"目标模型",避免目标模型过度更新。对城区交通环境下的车辆目标进行跟踪。实验结果表明,该方法较原Mean-shift方法可明显提高阻挡情况下的目标跟踪稳定性。 After analyzing the theoretic limitation of the Mean-shift to track gray background, a method, which combines Mean-shift and Kalman filter, is proposed. position of Mean-shift is predicted by Kalman filter at present, and then the Mean target in complex Firstly, the initial -shift is utilized to track the target position around the initial position. Meanwhile the same time, the Bhattacharyya coefficient is adopted to measure the comparability between the target model and the candidate model, An occlusion coefficient is proposed as the evidence of occlusion. Then determines whether or not the target model is replaced by the latter to avoid the target model being updated excessively. Experiments based on the vehicle objects in the city are carried out, and the simulation results show that the tracking stability and adaptability for the gray imaging target, even in occlusion, are improved significandy with the proposed method.
出处 《重庆理工大学学报(自然科学)》 CAS 2010年第3期76-80,共5页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(69674012) 重庆市自然科学基金资助项目(2006BA6016)
关键词 目标跟踪 Mean SHIFT算法 卡尔曼滤波 遮挡因子 object tracking Mean shift Kalman filter occlusion coefficient
作者简介 詹建平(1965-),男,四川内江人,硕士研究生,主要从事目标检测与目标跟踪、数字通信方面的研究。
  • 相关文献

参考文献11

  • 1Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Kernel-based object tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564 -577.
  • 2Huiyu Zhou, Yuan Yuan, Chunmei Shi. Object tracking using SIFT features and mean shift [ J ]. Computer Vision and Understanding, 2009,113 : 345 - 352.
  • 3Shu-Xiao Li, Hong-Xing Chang, Cheng-Fei Zhu. Adaptive Pyramid mean shift for global real-time visual tracking [ J ]. Computer Vision and Understanding, 2009, 28 (3) : 424 - 437.
  • 4Fashing M, Tomasi C. Mean shift is a bound optimization [ J ]. IEEE Trans. Pattern Anal. Mach. Intell, 2005,27(3) : 471 - 474.
  • 5朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 6彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 7Na Lu, Zuren Feng. Mathematical model of blob matching and modified Bhattacharyya coefficient [ J ]. Computer Vision and Understanding, 2008, 26(10) : 1421 - 1434.
  • 8Noushath S, Hemantha K G, Shivakumara P. Diagonal Fisher linear discriminant analysis for efficient face recognition [ J ]. Neurocomputing, 2006, 69 ( 13 - 15 ) : 1711 - 1716.
  • 9窦建军,文俊,刘重庆.基于颜色直方图的图像检索技术[J].红外与激光工程,2005,34(1):84-88. 被引量:40
  • 10Comaniciu D , Rarnesh V, Meer P, Kernel-based object tracking [ J ]. IEEE Transactions . on Pattern Analysis and Machine Intelligence , 2003,25 (2) : 564 - 577.

二级参考文献32

  • 1祁海明,宋立众,金铭,乔晓林.变步长LMS自适应极化递推估值算法[J].系统工程与电子技术,2005,27(11):1847-1851. 被引量:4
  • 2Qi Haiming,Yu Weidong,Dong Qian,Zhang Huansheng.ADAPTIVE NULL PHASE-SHIFT POLARIZATION FILTER[J].Journal of Electronics(China),2007,24(3):321-325. 被引量:5
  • 3[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 4[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 5[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 6[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 7[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 8[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 9[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 10[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.

共引文献251

同被引文献102

引证文献9

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部