期刊文献+

ZrC/奥氏体相界面形变诱导相变动力学 被引量:9

Transitional dynamics of deformation induced phase transformation at ZrC/austenitic interface
在线阅读 下载PDF
导出
摘要 研究热模拟单向压缩条件下含ZrC粒子的低碳锰(铌)钢在形变诱导相变过程中的铁素体转变动力学关系。研究结果表明:添加ZrC粒子使试验用钢奥氏体晶界的形核率明显增加,影响形变诱导铁素体的形态、分布及晶粒细化效果;高温变形时由于形变诱导的作用,铁素体转变量随应变的增大不断增加,而铁素体晶粒的细化主要是由于动态再结晶的作用,试验用钢在形变诱导相变的变形温度TAe3~TAr3之间的低温区进行变形(TAe3为形变诱导相变的开始温度,TAr3为形变诱导相变的终止温度),可以加速铁素体形核;同时,一定粒径和体积分数(<0.6%)的ZrC粒子作为形变和再结晶核心,不仅阻碍位错的运动,而且造成位错密度增大,因而提高α-Fe形核率。在温度为900℃、应变速率为1s-1的条件下,试验用钢获得超细组织对应的ZrC粒子临界体积分数为0.6%。 The transitional dynamic relations of deformation induced ferrite transformation of low carbon manganese (niobium) steel containing ZrC particles under unidirectional compression thermal simulating condition were investigated. The results show that nucleation rate at austenite grain boundaries of the tested steel increases when ZrC particles are added, which affects deformation-induced ferrite morphology, distribution and its refinement. The increase of amount of the deformation induced ferrite is due to deformation enhancement in phase transformation. The decrease of size of deformation induced ferrite is due to the enhancement of recrystallization. And the deformation of the tested steel at low temperature in TAe3TAr3 can accelerate ferrite nucleating. Meanwhile, as the deformation and recrystallization nucleus, ZrC particles with definite radius and suitable volume fraction (0.6%), can hinder the movement of dislocation and can increase dislocation density, thus improve α-Fe nucleating rate, the critical volume fraction of ZrC particles is 0.6% which leads to the further refinement of ferrite grains of the tested steel at 900 ℃ and strain rate of 1 s1.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期120-124,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(59971031) 湖南工学院科研重点资助项目(kyc0801)
关键词 低碳锰(铌)钢 ZRC粒子 形变诱导铁素体相变 转变动力学 low carbon manganese niobium steel ZrC particles deformation induced ferrite transformation transformation dynamics
作者简介 通信作者:刘志义(1962-),男,湖南长沙人,教授,博士生导师,从事金属材料强韧化理论与技术研究;电话:0731—88836011;E-mail:liuzhiyi@mail.csu.edu.cn
  • 相关文献

参考文献15

二级参考文献44

  • 1刘朝霞,佟铭明,黄成江,李殿中.低碳钢形变诱导铁素体相变过程中碳的扩散行为[J].金属学报,2004,40(9):930-934. 被引量:15
  • 2顾景诚.铝合金时效过程(下)[J].轻合金加工技术,1985,(4):18-20.
  • 3顾景诚.铝合金时效过程(上).轻合金加工技术,1985,(3):25-28.
  • 4[1]Kira SATO. Research Project Innovative Steels in Japan (STX-21 Project). Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Ultra-Steel 2000. Held in Tsukuba, Japan. 2000.1.
  • 5[2]Won-Pyo Lee. Development of High Performance Structural Steels for 21st Century. Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Ultra-Steel 2000. Held in Tsukuba, Japan. 2000.1.
  • 6李成功 巫世杰 等.先进铝合金在航空航天工业中的应用与发展[J].中国有色金属学报,2002,12(1):14-21.
  • 7徐祖耀.相变原理[M].北京:科学出版社,2000..
  • 8HALL M B. The Effect of Retrogression Temperature on the Properties of an RRA7150 Aluminum Alloy[J]. Z Metallkd, 1994, 85(2):134.
  • 9LUKASAK. Aluminum Alloy Development Efforts for Compression Dominated Structure of Aircraft[J]. Light Metal Age, 1991, 49(10):11-15.
  • 10STALEY J T. Advanced in Aluminum Alloy Products for Structural Applications in Transportation[J]. J Dephysique IV, Colloque C T, 1993, 3(2):179-183.

共引文献182

同被引文献80

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部