期刊文献+

FPGA上二元域公钥系统中求逆模块的改进 被引量:4

Improvement of Inverses in GF(2^m) for Public-key Cryptography System on FPGA
在线阅读 下载PDF
导出
摘要 公钥密码体制建立在有限域上本文针对二元域上操作复杂的基本运算求逆,将软件应用中效率较高的殆逆算法移植到FPGA中,利用其分步特点达到较低延迟,并利用度数和乘法的规律性缩减执行周期,以较小硬件开销增量换取了较大的性能提高.且模块又可能对多个二元域通用.此外,方案同样适用于软件求逆. Public-key cryptography is built on Galois field. Focusing on complicated inverse operation in GF(2^m),almost inverse algorithm which works efficiently in software applications is transplanted to FPGA in this paper,using its two steps feature to achieve higher frequency. And the lows of degree and multiplication were found to reduce clock cycles. Greater performance increase is achieved by smaller hardware cost. Additionally,the module can be fit for several binary finite fields. Further,the improvement can be applied to software and other public-key cryptography systems in GF(2^m).
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第2期259-263,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(60633060)资助 国家自然科学基金项目(60876028)资助 国家"八六三"高技术研究发展计划项目(2007AA01Z113-1 2007AA01Z113)资助 中国科学院计算技术研究所系统结构重点实验室开放课题基金项目(ICT-ARCH200704)资助
关键词 二元域 公钥密码体制 求逆 FPGA GF(2m) public-key cryptography inverses FPGA
作者简介 宋灏龙。男。1983年生,硕士研究生,研究方向为信息安全、高性能计算;E-mail:songhaolong@yeah.net 梁华国。男,1959年生,博士,教授,博士生导师,研究方向为嵌入式系统综合与测试、数字系统设计自动化、高可靠性的工业控制计算机研究与开发和分布式控制系统; 单国华.女,1983年生,硕士研究生,研究方向为网络安全.
  • 相关文献

参考文献10

  • 1Annex A. Number-theoretic background[ J]. IEEE P1363/Draft Version 13, New York: IEEE, 1999.
  • 2Itoh T, Tsujii S. A fast algorithm for computing multipilcative inverses in GF (2n) using normal bases [ J ]. Information and Computation, 1988,78 (3) : 171-177.
  • 3Sang Ho Oh, Chang Hart Kim. Algorithm of inverse operation in GF(2n) [J]. S. 1. IEEE Transaction Information Theory, 1998.
  • 4Mullin R C, Onyszchuk I M, Vanstone S A, et al. Optimal normal bases in GF(pn) [ J]. Discrete Applied Mathematics, 1998,22(2) : 149-161.
  • 5Darrel Hankerson, Alfred Menezes , Scott Vanstone. Guide to elliptic curve cryptography[ M]. New York :Springer-Verlag, 2004.
  • 6Brunncr H, Curiger A, Hofstctter M. On computing multiplicativc inverses in GF(2m ) [J]. IEEE Transactions on Computers, 1993, 42(8) :1010-1015.
  • 7Araki K,Fujita I, Mofisue M. Fast inverters over finite field based on Euclid's algorithm [ J]. IEEE Transactions IEICE, 1989, 72 ( 11 ) : 1230-1234.
  • 8Guo J H, Wang C L. Systolic array implementation of Euclid's algorithm for inversion and division in GF( 2m) [J]. IEEE Transactions on Computers, 1998,47 (10) : 1161-116.
  • 9袁丹寿,戎蒙恬.基于改进欧几里德算法的可重构性逆元结构[J].上海交通大学学报,2006,40(1):36-40. 被引量:4
  • 10Schroepel R, Orman H, Malley S O, et al. Fast key exchange with elliptic curve systems: D. Coppersmith [ C ]. Advances in Cryptology-CRYPTO'95, LNCS963,1995, London: Springer-Verlag, 1995.

二级参考文献7

  • 1袁丹寿,戎蒙恬,陈波.一种并行的有限域乘法器结构[J].上海交通大学学报,2005,39(4):636-639. 被引量:3
  • 2Orlando G, Efficient elliptic curve processor architectures for field programmable logic [D]. America:Dept of Electrical Eng,Worcester Polytechnic Institute, 2002.
  • 3Yan Z, Sarwate D V. New systolic architectures for inversion and division in GF(2^m)[J]. IEEE Trans Computers, 2003,52(11):1514 - 1519.
  • 4Guo J H, Wang C L. Systolic array implementation of Euclid's algorithm for inversion and division in GF (2^m)[J]. IEEE Trans Computers, 1998,47 ( 10 ) :1161-1167.
  • 5Brunner H, Curiger A, Hofstetter M. On computing multiplicative inverses in GF (2^m) [J]. IEEE Trans Computers, 1993,42(8):1010-1015.
  • 6Kitsos P, Theodoridis G, Koufopavlou O, An efficient reconfigurable multiplier architecture for GF(2^m)[J]. Microelectronic Journal, 2003, 34 (10):975-98O.
  • 7Araki K, Fujita I, Morisue M. Fast inverters over finite field based on Euclid's algorithm[J]. IEEE Trans IEICE,1989,72(11): 1230-1234.

共引文献3

同被引文献16

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部