期刊文献+

死端微滤牛血清白蛋白溶液膜通量的预测 被引量:1

Predicting the Flux of BSA Solutions in the Dead-end Microfiltration
在线阅读 下载PDF
导出
摘要 为实现对不同操作条件(操作压力、料液质量浓度和温度)下的牛血清白蛋白溶液死端微滤膜通量的预测,以训练步数、绝对相对误差和相关系数作为预测的衡量指标,并对所建立的3层BP神经网络和RBF神经网络基本模型的内部参数进行了优化.优化的BP神经网络模型的拓朴结构为3-9-1,学习率为0.05,学习/训练函数为traingdx,隐层到输出层的传递函数为logsig,该网络对牛血清白蛋白(BSA)溶液膜通量预测的平均绝对相对误差为2.37%,相关系数为0.9960;优化的RBF神经网络的网络设计函数为newrbe,散布常数为400,该网络对BSA溶液膜通量预测的平均绝对相对误差为4.83%,相关系数为0.987 0.结果表明,BP神经网络优于RBF神经网络. In order to predict the flux of BSA solutions under the different operating conditions (transmembrane pressure, feed concentration and temperature) in the dead-end microfihration, the training epochs, correlative coefficient and relative absolute error were used as three predictive criterions, and the configurations of the developed three layers BP and RBF neural network were optimized by changing the interior parameters of neural networks. The result showed that, in the experimental rang, an optimal configuration of the available BP neural network is 3-9-1, the number of hidden neurons is 9, the learning rate is 0.05, the learning function is traingdx, the transfer function is logsig. By using the BP neural network, the obtained average relative absolute error and correlative coefficient is 2.37%, 0. 9960, respectively. By using the RBF neural network, the designable function of the network for an optimal configuration of the available RBF neural network is newrbe, and its spread is 400. The obtained average relative absolute error and correlative coefficient is 4. 83% , 0. 987 0, respectively. Therefore an BP neural network is much better than a RBF neural network in the study of predicting the flux of BSA solutions in the dead-end microfiltration.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第2期235-239,267,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(20276003) 北京市自然科学基金资助项目(8052006)
关键词 死端微滤 通量 BP神经网络 RBF神经网络 dead-end microfiltration flux BP neural network RBF neural network
作者简介 王湛(1966-),男,河南新安人,博士生导师.
  • 相关文献

参考文献14

  • 1WOODS D, PIERCE C, ZEIHER E H. Biofouling of reverse osmosis systems: three case studies[ J]. Ultrapure Water, 1991, 8(7): 50-64.
  • 2MATTHEUS F A G, SHYAM S S, SALHA S A. Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems[J]. Desalination, 2002( 144): 367-372.
  • 3MOHAMMADI T, MOGHADAM K M, MADAENI S S. Hydrodynamic factors affecting flux and fouling during reverse osmosis of seawater[ J]. Desalination, 2002(151) : 239-245.
  • 4陈明杰,倪晋仁,薛安,黄国和,查克麦.典型前馈神经网络在潮流模拟中的应用与比较[J].泥沙研究,2003,28(5):41-48. 被引量:3
  • 5DORNIER M, DECLOUX M, TRYSTRAM G, et al. Dynamic modelingof crossflow microfiltration using neural networks[ J]. J Membr Sci, 1995, 98(1/2) : 263-273.
  • 6PIRON E, LATRILLE E, RENE F. Application of artificial neural networks for crossflow microfiltration modeling : "black - box" and semi-physical approaches[J]. Comput Chem Eng, 1997, 21(2) : 1021-1030.
  • 7HAMACHI M, CABASSUD M, DAVIN A. Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks[J]. Chem Eng Process, 1999, 38(3) : 203-210.
  • 8GOLOKA B S, CHITTARANJAN R. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms[ J]. J Membr Sci, 2006, 283 (1/2) : 147-157.
  • 9FUR Q, XU T W, PAN Z X. Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network[ J]. J Membr Sci, 2005, 251 (1/2) : 137-144.
  • 10CHELLAM S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions [ J ]. J Membr Sci, 2005, 258(1/2) : 35-42.

二级参考文献21

  • 1S Haykin. Neural networks, a comprehensive foundation. Macmillan Publishing Company, 113 Sylvan Avenue, Englewood Cliffs, NJ07632, 1994.
  • 2J M Jain, and K Mohiuddin. Artificial neural networks: a tutorial. IEEE Computer, Mar. 1996, 31-44.
  • 3M H Hassoun. Fundamentals of Artificial Neural Networks. MIT. 1995.
  • 4T Back, U Hammel, and H Schwefel. Evolutionary computation : Comments on the history and current state. IEEE Transactions on Evolutionary Computation, Apr.1997, 1(1): 3- 17.
  • 5N Bose, and P Lang. Neural Network Fundamentals with Graphs, Algorithms, and Application. McGraw-Hill, 1996.
  • 6A W Minns, and M J Hall, Artificial neural networks as rainfall-runoff models. Journal of Hydrology Sciences, 1996, Vol.41: 399-417.
  • 7K L Hsu, H V Gupta, and S Sorooshian. Artificial neural network modelling of the rainfall-runoff process. Water Resource Research, 1995, Vol.31 : 2517 - 2530.
  • 8YB Dibike, A W Minns, and M B Abbott. Application of Artificial Neural Networks to the Generation of wave Equations from Hydraulic Data. Journal of Hydraulic Research, 1999, Vol.37, 81 - 97.
  • 9Y B Dibike, D Solomatine, and M B Abbott. On the encapsulation of numerical-hydraulic models in artificial neural network. Journal of Hydraulic Research, 1999, Vol.37, No. 2: 147- 161.
  • 10Y B Dibike, and M B Abbott. Application of artificial neural networks to the simulation of a two-dimensional flow. Journal of Hydraulic Research, 1999, Vol.37, No. 4:435-447.

共引文献52

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部