期刊文献+

缺磷胁迫下番茄侧根形成与miR164及NAC1表达的关系 被引量:10

Relationship between the development of tomato lateral roots and expression of miR164,NAC1 under P deficiency
在线阅读 下载PDF
导出
摘要 为了研究番茄幼苗在缺磷胁迫下根系形态发育与生长素、生长素信号转导途径中的转录因子NAC1,以及调控NAC1表达的上游miR164之间的关系。试验以5和500μmol/L磷浓度作为缺磷胁迫和对照,检测了外源生长素NAA(1-naphthalene acetic acid)及生长素抑制剂NPA(N-1-naphthylphthalamic acid)对侧根形成的影响;同时采用RT-PCR检测了NAC1和miR164在缺磷胁迫下的时序表达。结果表明,缺磷胁迫下侧根大量形成与生长素及其运输密切相关,在侧根迅速形成的24 h内,NAC1的表达在缺磷胁迫下增强;而其上游的miR164表达降低,从而揭示了缺磷胁迫下侧根形成与miR164调节NAC1表达之间的关系。 This study investigated the relationship between the development of tomato lateral roots and auxin,NAC1(transcription factor involved in the auxin signal transduction) and miR164 expression under P deficiency.Effects of exogenous auxin NAA(1-naphthalene acetic acid) and its transport inhibitor NPA(N-1-naphthylphthalamic acid) on the lateral root development were analyzed under P deficiency(5 μmol/L Pi) versus the control(500 μmol/L Pi).The time course of the expression pattern of miR164 and its target gene,NAC1,were analyzed by RTPCR.The results showed that the development of lateral roots was promoted by NAA and blocked by NPA.During 12 h of lateral root initiation,expression of NAC1 was strongly up-regulated,while miR164 was down-regulated in P-deficient plants.Our data suggest that miR164,together with its target(NAC1),is involved in the mediation of P-deficiency-induced lateral root development.
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2010年第1期166-171,共6页 Journal of Plant Nutrition and Fertilizers
基金 国家自然科学基金项目(30700488) 教育部科学技术研究重点项目(107060) 江苏省普通高校研究生科研创新计划项目资助
关键词 番茄 侧根 生长素 MIRNA NAC1 tomato lateral root auxin miRNA NAC1
作者简介 作者简介:曾后清(1986-),男,江西吉安人,硕士研究生,主要从事缺磷胁迫下植物中miRNA的筛选与鉴定工作。Tel:025—84396393,E-mail:2007103140@njau.edu.cn. 通讯作者Tel:025—84396393,E-mail:yiyongl973@njau.edu.cn
  • 相关文献

参考文献19

  • 1Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A et al. Phosphate starvation induces a dcterminate developmental program in the roots of Arabidopsis thaliana [J]. Plant Cell Physiol., 2005, 46:174-184.
  • 2刘鹏,区伟贞,王金祥,严小龙,廖红.磷有效性与植物侧根的发生发育[J].植物生理学通讯,2006,42(3):395-400. 被引量:12
  • 3Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system [J]. Plant Physiol., 2002, 129 : 244 -256.
  • 4Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L et al. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation [ J ]. Plant Physiol., 2005, 137: 681-691.
  • 5Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J]. Genes Deveh , 2000, 14: 3024-3036.
  • 6王友华,段留生,卢孟柱,李召虎,王敏杰,翟志席.NAC1上游调控区表达特征及其与侧根激素诱导的关系[J].中国科学(C辑),2006,36(3):217-222. 被引量:3
  • 7Guo H, Xie Q, Fei J, Chua N. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregaulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell. 2005, 17: 1376-1386.
  • 8Barrel D. MicroRNAs: Genomics, biogenesis, mechanism and function [J]. Cell, 2004, 116: 281-297.
  • 9Hammond S M, Bernstein E, Beach D, Harmon G J. An RNA--directed nuclease mediates post-transcriptional gene silencing in Drosphila cells [J]. Nature. 2002, 404: 293-296.
  • 10Chen X. microRNA biogenesis and function in plants [ J]. FEBS Lett., 2005, 579 : 5923-5931.

二级参考文献59

  • 1石江华,廖红,严小龙.植物根系向地性感应的分子机理与养分吸收[J].植物学通报,2005,22(5):523-531. 被引量:16
  • 2Zhang H, Forde B (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279:407-409
  • 3Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003). The role of nutrient availability in regulating root architecture. Curt Opin Plant Biol, 6:280-287
  • 4Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol, 129:244-256
  • 5Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Tortes A, Rampey RA, Bartel B, Herrera-Estrella L (2005). An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol, 137:681-691
  • 6Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ, 28:67-77
  • 7Malamy JE, Benfey P (1997). Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci, 2:390-396
  • 8Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002). AUXI promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell, 14:589-597
  • 9McDonald AE, Niere JO, Plaxton WC (2001). Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation. Can J Microbiol, 47:969-978
  • 10Reed RC, Brady SR, Muday GK (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol, 118:1369-1378

共引文献13

同被引文献231

引证文献10

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部