期刊文献+

不可约Z-矩阵最小特征值的数值算法 被引量:2

A Numerical Algorithm for the Minimal Eigenvalue of an Irreducible Z-matrix
在线阅读 下载PDF
导出
摘要 首先给出了不可约非负矩阵最大特征值的上下界。然后利用相似变换构造了一列相似矩阵,从而得到不可约非负矩阵最大特征值的逐步压缩的一列上下界,其极限为所要求的最大特征值。最后利用Z-矩阵与非负矩阵的关系,给出了计算不可约Z-矩阵最小特征值的一个新算法。理论上给出了收敛性证明。该算法迭代过程简单,不用计算逆矩阵,从而计算量小,占用内存少。数值实验的结果表明该算法具有可行性和有效性。 It is well-known that the problem to calculate the minimal eigenvalue of a matrix commonly occurs in many branches of science and engineering. In this paper, we consider the problem to calculate the minimal eigenvalue of a so-called Z-matrix. An upper and a lower bounds on the maximal eigenvalue of a nonnegative matrix are firstly given. Then by using a similarity transformation, a series of upper and lower bounds on the maximal eigenvalue of a nonnegative matrix are obtained, these bounds gradually approach the maximal eigenvalue. Finally, based on the relation between the Z-matrix and the nonnegative matrix, a numerical algorithm for computing the minimal eigenvalue of an irreducible Z-matrix is proposed. It is shown by numerical examples that the convergency rate of the presented method is faster than that of previous methods.
出处 《工程数学学报》 CSCD 北大核心 2010年第1期105-110,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10962001) 广西研究生教育创新基金(2008106080701M369)~~
关键词 非负矩阵 Z-矩阵 不可约 最小特征值 收敛率 nonnegative matrices Z-matrices irreducible minimal eigenvalue convergency rate
作者简介 刘利斌(1982年8月生),男,硕士.研究方向:数值代数
  • 相关文献

参考文献11

二级参考文献30

  • 1章伟,黄廷祝.不可约M-矩阵最小特征值的估计[J].工程数学学报,2004,21(F12):31-34. 被引量:10
  • 2H.Minc 杨尚骏译.非负矩阵[M].辽宁教育出版社,1991..
  • 3H.威尔金森 石钟慈等(译).代数特征值问题[M].科学出版社,1987..
  • 4M. Marvin and H. Minc, A survey of Matrix Theory and Matrix Inequalities, Dover Publications, Inc., New York, 1992.
  • 5A. Berman and R.J.Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Press, PL, 1994.
  • 6Tomasz Szulc, A Lower Bound for the Perron Root of a Nonnegative Matrix. II, Lin. Alg-Appl., 112(1989), 19-27.
  • 7M.Neumann, Inverse of Perron complement of inverse M-matrices, Linear Algebra Appl, 313(2000)163-171.
  • 8Linzhang Lu, Perron complement and Perron root, Linear Algebra Appl, 341(2002) 239-248.
  • 9Dursun Tasci, Steve Kirland, A Sequence of Upper Bounds for the Perron Root of a Nonnegative Matrix, Linear Algebra Appl, 273(1998) 23-28.
  • 10Ando T.Inequalities of m-matrices[J].Linear Multilineax Algebra,1980,8:291-316

共引文献56

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部