期刊文献+

利率期限结构模型估计结果影响因素经验研究 被引量:6

An Empirical Study on Factors Affecting Estimation Results of Term Structure of Interest Rate Model
原文传递
导出
摘要 本文首先将利率期限结构模型分成了四类,并总结了国内外利率期限结构模型的估计方法。作者利用中美利率数据证明了利率市场的有效性,估计方法和数值优化算法都会对模型估计结果产生影响。实证结果表明,利用所有市场利率数据的新估计方法得到的参数会更加准确,可以消除利率市场的套利机会;遗传算法的估计结果不太稳定,单纯形法估计结果对初始值比较敏感,而矩形分割法的估计结果最为稳健。 The paper classif the term structure of interest rate models into four categories and summarizes the estimation methods for interest rate models. The paper uses interest rate data of China and USA to demonstrate that the weak efficiency of interest rate market, and that estimation methods and numerical optimization methods affect the estimation results. Empirical results indicate that the new estimation method, which takes advantage of all information in all market interest rates data, can get the more accurate parameters and eliminate arbitrage in interest rate market. It also indicates that genetic method is not very stable; nelder-mead method is sensitive to initial value of these parameters and, divided rectangles method can get the most robust estimation results.
出处 《中国管理科学》 CSSCI 北大核心 2010年第1期9-17,共9页 Chinese Journal of Management Science
基金 教育部人文社会科学研究2006年度规划项目(06JA790070) 上海财经大学研究生科研创新基金项目(CXJJ2008331)
关键词 利率期限结构 鞅差分 遗传算法 矩形分割法 广义距估计 term structure of interest rate martingale difference genetic search divided rectangles GMM
作者简介 戴国强(1952-),男(汉族),上海人,上海财经大学金融学教授、博士生导师,上海财经大学MBA学院院长、书记,研究方向:货币政策.
  • 相关文献

参考文献30

  • 1Merton,R. C.. A dynamic general equilibrium model of the asset market and its application to the pricing of the capital structure of the firm [Z]. Working Paper,1970.
  • 2Vasicek, O.. An equilibrium characterization of the term structure [J]. Journal of Financial Economics, 1977, 5: 177-188.
  • 3Cox, J. C. , Ingersoll Jr. , J. E. , Ross,S. A.. A theory of the term structure of interest rates [J]. Econometrica, 1985, 53: 385-407.
  • 4Hull, J. , White, A.. Pricing interest rate derivative securities [J]. Review of Financial Studies, 1990, 3:573 -592.
  • 5Ho, T. S. Y. , Lee, S.-B.. Term structure movements and pricing of interest rate claims[J].Journal of Finance, 1986, 41: 1011-1029.
  • 6Black, F., Karasinski, P.. Bond and option pricing when short rates are lognormal[J]. Financial Analysts Journal, 1991, 47: 52-59.
  • 7Heath, D. , Jarrow, R. , Morton, A.. Bond pricing and the term structure of interest rates: A new methodology [J]. Econometrica, 1992, 60: 77-105.
  • 8Brace, A., Gatarek, D., Marek Musiela, M.. The market model of interest rate dynamics [J]. Mathematical Finance, 1997, 7: 127-155.
  • 9Jamshidian, F.. LIBOR and swap market models and measures[J].Finance and Stochastics, 1997, 1: 293- 330.
  • 10Chan, K. C., Karolyi, G. A., Longstaff, F. A., Sanders, A. B.. An empirical comparison of alternative models of the short-term interest rate[J].Journal of Finance, 1992, 47:1209-1227.

二级参考文献65

共引文献273

同被引文献84

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部