期刊文献+

羟基磷灰石在磺化聚醚苯并咪唑薄膜表面的生长

Growth of Hydroxyapatite on Sulfonated Polybenzimidazole Membranes
在线阅读 下载PDF
导出
摘要 以聚[2,2′-(对氧基联苯)-5,5′-苯并咪唑](OPBI)及其磺化产物磺化聚[2,2′-(对氧基联苯)-5,5′-苯并咪唑](SOPBI)薄膜作为基体,采用交替沉积和模拟体液(SBF)浸泡相结合的方法快速在薄膜表面沉积羟基磷灰石层.采用选区电子衍射(SAED)和衰减全反射傅里叶变换红外光谱(ATR-FTIR)对羟基磷灰石(HA)的晶体结构进行了分析.用扫描电子显微镜(SEM)对整个沉积过程中羟基磷灰石的形态变化进行了跟踪.实验结果表明,SOPBI薄膜诱导HA沉积的速率明显快于OPBI薄膜.SOPBI的磺酸基团不但提供了固定Ca2+的负电表面,而且还有助于咪唑基团对Ca2+的固定.而缺失磺酸基团的OPBI在不同pH值的交替沉积溶液中的电离形式阻碍了咪唑基团对Ca2+和HPO24-的作用,且未能在SBF浸泡过程中得到改善. Organic polymer coated with hydroxyapatite (HA) is an attractive material for the development of tissue repairing application. The abilities of hydroxyapatite incubation on poly [ 2,2'-(p-oxydiphenylene)-5, 5 '-bibenzimidazole ] ( OPBI ) and sulfonated poly [ 2,2'- (p-oxydiphenylene) -5,5 '-bibenzimidazole ] ( SOPBI ) membranes were investigated with the combination of alternate soaking process and simulated body fluid (SBF) soaking methods. Hydroxyapatite phase was analyzed by SAED and ATR-FTIR method. Morphology changes of the hydroxyapatite were observed by SEM. The results show that the use of the SOPBI membranes leads to a higher hydroxyapatite formation rate than that of the OPBI membranes. The sulfonic groups of SOPBI membranes not only offer a negative charged surface to attract Ca2+ but also help imidazole groups to bind Ca^2+. In comparison, OPBI membranes without sulfonic groups decrease formation ability of hydroxyapatite because protonation types of imidazole groups in alternate soaking solutions inhibit interaction between imidazole and Ca^2+ and HPO2- , which can not be improved by the subsequent SBF soaking.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2010年第1期1-6,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50973062)资助
关键词 羟基磷灰石 磺化聚醚苯并咪唑 交替沉积 Hydroxyapatite Poly [2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] Alternate soaking
作者简介 联系人简介:史子兴,男,博士,副教授,主要从事聚合物基杂化材料和耐热杂环高聚物的设计与合成研究.E-mail:zxshi@sjtu.edu.cn
  • 相关文献

参考文献24

  • 1Yamaguchi I. , Itoh S. , Suzuki M. , et al.. Biomaterials[ J] , 2003,24:3285-3292.
  • 2Kawai T. , Ohtsuki C. , Kamitakahara M. , et al.. Biomaterials[ Jl , 2004, 25:4529-4534.
  • 3Wang X. , Li Y. , Wei J. , et al.. Biomaterials[ JJ , 2002, 23:4787-4791.
  • 4Bajpai K. A., Singh R.. Polym. Int. [J], 2007, 56:557-568.
  • 5Tanahashi M. , Matsuda T.. J. Biomed. Mater. Res. [J], 1997, 34:305-315.
  • 6Putnam D. , Gentry C. A. , Pack D. W. , et al.. Proc. Natl. Acad. Sci. [J] , 2001,98:1200-1205.
  • 7Schachschal S. , Pich A. , Adler H. J.. Langmuir[J], 2008, 24:5129-5134.
  • 8Li Q. , Jensen J. O. , Savinell R. F. , et al.. Prog. Polym. Sci. [J], 2009, 34:449-477.
  • 9Xu H. , Chen K. , Guo X. , et al.. Polymer[J], 2007, 48:5556-5564.
  • 10Kokubo T. , Kushitani H. , Sakka S. , et al.. J. Biomed. Mater. Res. [J], 1990, 24:721-734.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部