期刊文献+

基于改进SVM模型的电能质量扰动分类 被引量:11

Classification method of power quality disturbances based on improved SVM model
在线阅读 下载PDF
导出
摘要 提出一种改进的支持向量机模型,对电能质量扰动进行分类。支持向量机(SVM)在对大规模样本集的训练和分类时,需要占用大量内存,时耗过高,运算速度缓慢。针对这种情况提出一种改进的SVM模型:将原始训练样本集应用粗糙集理论(RS)去除冗余信息,然后在SVM中引入概率分布函数,用一个小规模的样本集训练得到一个初始的分类器,用这个初始分类器对大规模训练集进行修剪,修剪后得到一个规模很小的约减集,再用这个约减集进行训练得到最终的分类器。实验表明:这种改进的SVM模型有效降低了训练样本集的规模,提高了分类能力。 A new support vector machine(SVM) model is proposed to classify power quality disturbances. The improved SVM method improves the speed of classification when SVM treats the large training set. Firstly, using rough set(RS) theory to eliminate redundant information of the large initial training set. Secondly, utilizing a probabilities function in SVM, training an initial classifier with a small training set and pruning the large training set with the initial classifier to obtain a small reduction set. Then, training with the reduction set, final classifier is obtained. Experiments show that this method effectively reduces the training set and improves the classification ability.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2010年第3期15-19,共5页 Power System Protection and Control
关键词 电能质量 支持向量机 粗糙集 缩减训练集 小波变换 power quality SVM RS reduced training set wavelet transform
作者简介 俞晓冬(1974-),女,副教授,研究方向为人工智能在电力系统中的应用等;E-mail:xiaodongyu2001@163.com 周栾爱(1973-),女,研究方向为电力系统及其自动化等。
  • 相关文献

参考文献15

  • 1Sabin D D, Sundaram A. Quality Enhances Reliability[J]. IEEE Spectrum, 1996.
  • 2Olivier P, Pascal R, Michel M. Detection and Measurement of Power Quality Disturbances Using Wavelet Transform[J]. IEEE Trans on Power Delivery, 2000, 15(3): 1039-1044.
  • 3Kanitpanyacharoean W, Premrudeepreechacharn S. Power Quality Problem Classification Using Wavelet Transformation and Artificial Neural Networks[J]. IEEE Power Systems Conference and Exposition, 2004(3): 1496 - 1501.
  • 4HUANG Jian-sheng, Thong N D. A Neural Fuzzy Classifier for Recognition of Power Quality Disturbances [J]. IEEE Trans on Power Delivery, 2002, 17 (2) : 609-616.
  • 5胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 6Weston J, Watkins C. Multi-class Support Vector Machines[A]. in: Proceedings of ESANN99[C]. Brussels(Belgium): 1999.
  • 7Hu G S, Chen Y T. Power System Reliability Evaluation Using Support Vector Machine[A]. in: Inter Symposium on Computational Intelligence and Industrial Applications[C]. Hainan(China): 2004.
  • 8Lee J, Lee D. An Improved Cluster Labeling Method for Support Vector Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27: 461-464.
  • 9Hsu Chih-wei, Lin Chih-jen. A Comparison of Methods for Multi-class Support Vector Machines[J]. IEEE Trans on Neural Networks, 2002, 13(2).
  • 10李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53

二级参考文献26

共引文献91

同被引文献160

引证文献11

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部