摘要
采用全量子理论,考虑了边界振动的含克尔介质的微腔(振动边界视为频率为ω_m的量子谐振子)与单模辐射场构成的系统,给出了系统的时间演化算符及其变换,得到了系统态函数随时间的演化关系。讨论了当振动边界回到初态时的腔场态,得到了许多与已有文献不同的薛定谔猫态,这对于研究猫态的性质和应用是十分有意义的。
For a system composed of a cavity with Kerr medium, a movable mirror (treated as a quantum harmonic oscillator with frequency ωm and a single mode field in the cavity, the time evolution operator and its transformation of the system are given. Time evolution of the system state is obtained with full quantum theory. State of the cavity field at the time of the mirror back to its original state is discussed, and a variety of multicomponent SchrSdinger cat states which are different from those in the published literature are obtained, which is significant for the investigation of the nature and applications of the Schrodinger cat states.
出处
《量子电子学报》
CAS
CSCD
北大核心
2010年第1期63-68,共6页
Chinese Journal of Quantum Electronics
关键词
量子光学
薛定谔猫态
边界振动微腔
克尔介质
quantum optics
SchrSdinger-cat state
cavity with a moving mirror
Kerr medium
作者简介
曲照军(1958-),山东烟台人,硕士,教授,主要从事量子光学研究。E—mail:qzj58314@yahoo.com.cn