期刊文献+

含介质的边界振动微腔中薛定谔猫态的产生 被引量:1

Preparation of Schrdinger cat states in a cavity with medium and a moving mirror
在线阅读 下载PDF
导出
摘要 采用全量子理论,考虑了边界振动的含克尔介质的微腔(振动边界视为频率为ω_m的量子谐振子)与单模辐射场构成的系统,给出了系统的时间演化算符及其变换,得到了系统态函数随时间的演化关系。讨论了当振动边界回到初态时的腔场态,得到了许多与已有文献不同的薛定谔猫态,这对于研究猫态的性质和应用是十分有意义的。 For a system composed of a cavity with Kerr medium, a movable mirror (treated as a quantum harmonic oscillator with frequency ωm and a single mode field in the cavity, the time evolution operator and its transformation of the system are given. Time evolution of the system state is obtained with full quantum theory. State of the cavity field at the time of the mirror back to its original state is discussed, and a variety of multicomponent SchrSdinger cat states which are different from those in the published literature are obtained, which is significant for the investigation of the nature and applications of the Schrodinger cat states.
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第1期63-68,共6页 Chinese Journal of Quantum Electronics
关键词 量子光学 薛定谔猫态 边界振动微腔 克尔介质 quantum optics SchrSdinger-cat state cavity with a moving mirror Kerr medium
作者简介 曲照军(1958-),山东烟台人,硕士,教授,主要从事量子光学研究。E—mail:qzj58314@yahoo.com.cn
  • 相关文献

参考文献7

  • 1Mancini S, Man'ko V I, Tombesi P. Ponderomotive control of quantum macroscopic coherence [J]. Phys. Rev. A, 1997, 55(4): 3042-3050.
  • 2Bose S, Jacobs K, Knight P L. Preparation of nonclassical states in cavities with a moving mirror [J]. Phys. Rev. A. 1997. 56(5): 4175-4186.
  • 3吴曙东,曲照军,詹志明,金丽霞.含克尔介质微波激射器的原子辐射率[J].物理学报,2001,50(10):1925-1929. 被引量:6
  • 4曲照军,柳盛典,杨传路,马晓光.边界振动的微腔中的二能级原子[J].物理学报,2006,55(7):3393-3395. 被引量:3
  • 5陈伟.磁场作用下XXZ模型的热力学纠缠[J].量子电子学报,2008,25(2):177-180. 被引量:6
  • 6Brune M, hagley E, Dreyer J, et al. Observing the progressive decoherence of the " meter " in a quantum measurement [J]. Phys. Rev. Left., 1996, 77(24): 4887-4890.
  • 7Monroe C, Meekhof D M, King B E, et al. SchrSdinger cat superposition state of an atom [J]. Science, 1996, 272: 1131-1136.

二级参考文献23

共引文献12

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部