期刊文献+

弹性支承弯曲振动梁的频率方程及其特征值分析 被引量:1

Frequency Equation of Elastic Supported Beams and Analysis of Their Eigenvalues
在线阅读 下载PDF
导出
摘要 由等截面直梁弯曲振动微分方程及其通解和弹性支承、中间固定支承与自由端的边界条件,推导出弹性支承弯曲振动梁的频率方程的解析表达式.并利用数值方法(二分法)计算出在不同弹簧弹性系数和梁的弯曲刚度下弯曲振动梁的前两阶特征值,分析了梁的弯曲刚度对特征值的影响.另外,通过给出的在不同中间固定支承位置下特征值随弹簧弹性系数变化的曲线,分析了弹簧弹性系数对特征值的影响. Based on the bending vibration differential equation and its general solution of the beams, the analytical expressions of frequency equation of bending vibration beams with the elastic support have been derived under the boundary conditions including the elastic support, the intermediate fixed support and free end. And the first two-order eigenvalues of the beams have been calculated by using numerical methods (dichotomy) when the coefficient of the torsion springs and the bending rigidity of the beams are different and the influences on the eigenvalues by the bending stiffness of the beams have been analyzed. In addition, through the given variation curve that the eigenvalues are changing along with the coefficient of the torsion springs at each location of the intermediate fixed support, the influences on the eigenvalues by the coefficient of the torsion springs have been analyzed.
出处 《青岛理工大学学报》 CAS 2009年第6期99-102,共4页 Journal of Qingdao University of Technology
关键词 弹性支承 弯曲振动梁 频率方程 特征值 elastic support bending vibration beam frequency equation eigenvalue
作者简介 任正义(1962-),男,黑龙江哈尔滨人.博士,教授,主要从事机械设计及理论研究.E-mail:yetangyt@eyou.com.
  • 相关文献

参考文献5

二级参考文献15

  • 1清华大学固体力学教研组.机械振动(上册)[M].北京:机械工业出版社,1980..
  • 2邹光胜.输流管道的振动特研究(学位论文)[M].中国航空研究院,1999..
  • 3李楠 李志强.Visual Basic6.0入门到提高[M].北京:人民邮电出版社,1998..
  • 4Wang C M.Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions[J].Journal of Engineering Mechanics ASCE,1995,121:763~765.
  • 5Reddy J N,Wang C M,Lee K H.Relationships between bending solutions of classical and shear deformation beam theories.International Journal of Solids and Structures[J].1996,34:3373~3384.
  • 6Lim C W,Wang C M,Kitipornchai S.Timoshenko curved beam bending solutions in terms of Euler-bernoulli solutions[J].Archive of Applied Mechanics,1997,67:179~190.
  • 7Reddy J N,Wang C M,Lim G T,Ng K H.Bending solutions of Levinson beams and plates in terms of the classical theories[J].International Journal of Solids and Structures,2001,38:4701~4720.
  • 8Reddy J N,Wang C M.Relationships between classical and shear deformation theories of axisymmetric circular plates[J].AIAA Journal,1997,35:1862~1868.
  • 9Reddy J N,Wang C M.Deflection relationships between classical and third-order plate theories[J].Acta Mechanica,1998,130:199~208.
  • 10Reddy J N,Wang C M.An overview of the relationships between solutions of the classical and shear deformation plate theories[J].Composites Science and Technology,2000,60:2327~2335.

共引文献23

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部