期刊文献+

一种适于非线性非高斯目标跟踪的MRIMMPF算法 被引量:1

A MRIMMPF Algorithm Suitable for Nonlinear/Non-Gaussian Target Tracking
在线阅读 下载PDF
导出
摘要 为解决粒子滤波应用到IMM算法时计算量过大的问题,融合交互式多模型和粒子滤波,提出了一种采用多速率方法的交互式多模型粒子滤波(multirate interacting multiple modelparticle filter,MR IMMPF)算法。该算法采用多模型结构来跟踪任意机动的目标;使用一种3模型、one-third速率/全速率跟踪算法,一个one-third速率模型处理非机动或微弱机动,2个全速率模型用于机动模式,以处理非线性、非高斯问题。仿真结果表明,MR IMMPF算法在性能上并不低于交互多模型粒子滤波(IMMPF)算法,但是计算量明显减小。 By combining the interacting multiple model with the particle filter, a new interacting multiple model particle filter (multi - rate interacting multiple model particle filter, i.e. MRIMMPF) algorithm is proposed, in which a multi - rate technique is adopted. In the algorithm the multiple models are used for tracking arbitrary maneuvering target. To deal with the nonlinear and non - Gaussian problems, a particle filter is adopted in each model. But when the particle filter is applied in the IMM algorithm, an expensive Computation appears in the whole process. In order to solve this kind of disadvantage, the multi - rate technique is adopted, by doing so, the computation is obviously reduced. The simulation results show that the MRIMMPF algorithm works as well as the IMMPF algorithm in performance.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2009年第6期36-40,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(60601016)
关键词 交互多模型 多速率 粒子滤波 非线性非高斯 IMM multi - rate particle filter nonlinear/non - Gaussian
作者简介 梁波(1975-),男,山东泰安人,讲师,主要从事无源定位和雷达系统仿真研究,E—mail:Lijing412@sohu.com
  • 相关文献

参考文献9

  • 1Bar Shalom Y, Li Xiao Rong. Estimation and Tracking.: Pnnciples, Techniques, and Software [ M.]. London:Artech House, 1993.
  • 2Gordon N J, Shalmond D J, Smith A F M. Novel Approach to Nonlinear/non- Gaussian Bayesian stateestimation [ J ]. IEEE Proe, 1993,40(2) : 107 - 113.
  • 3Hong L, Cong S, Wicker D. Distributed Multiratei Nteracting Multiple model Fusion (DMRIMMF) with Application to Out -of- sequence GMTI data[ J]. IEEE Trans Automatic Control,2004,49( 1 ) :102 -107.
  • 4Hong L, Cui N, Bakich M ,et al. Multirate Interacting Multiple Model Particle Filter for Terrain-based Ground Target Tracking [ J]. IEE Proc - Control Theory Appl,2006,153 (6) :721 - 731.
  • 5Go N J, Maskell S, Kzrubarajan T. Efficiont Particle Filters for Joint Tracking and Classification[ C ]//proceedings of SPIE: Signal and Data Processing of Small Targets. Olivere: [ s. n ] ,2002:439 -449.
  • 6McGinnity G, Irwin G W. Multiple Model Bootstrap Filter Formaneuvering Target Tracking [J]. IEEE Transactions on Aero- spaceand Electronic Systems, 2000, 36(3 ) : 1006- 1012.
  • 7Blom H A P, Bar Shalom Y. The Znteractingmultiple Model Algrithm for System Swith Markovian Switching Coefficients [ J ]. IEEE Trans Aatomatic Control, 1988,33 (8) :780 - 783.
  • 8Coleman T F, Li Y. A Effective Newtm Method for Minimizing A Quadratic Function Subject to Bounds on Some of the Varinble [ J ]. SZAM Joural on Optimization, 1996,6 (4) : 1040 - 1058.
  • 9Ahmed E L Zooghby. Potentials of Smart Antenna in CDMA Systems and Vplink Improvements[ J]. IEEE Antenna and Propiqation Magzainek,2001,43(5 ) : 172 - 177.

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部