期刊文献+

一种基于商品基因的个性化推荐模型 被引量:3

A Personalized Recommendation Model Based on Item Gene
在线阅读 下载PDF
导出
摘要 个性化推荐技术在电子商务系统中得到了广泛应用.但现有的个性化推荐模型不能反映出商品的某些特殊属性对用户购买行为的影响及用户购买某商品的真正原因.引入生物界中基因的概念,提出了基于商品基因的个性化推荐模型,发现用户钟爱商品基因,并将钟爱商品基因遗传到用户选择的商品.该模型能更好地发现用户的购买动机,从而进一步提高个性化推荐精度和用户满意度. the current Personalized recommendation technology has been widely applied in e -commerce. However, personalized recommendation models do not consider the influence of items' special attributes on user purchasing behavior, and the real reasons that users buy one item. After introducing the concept of gene used in biology, a model based on item gene is proposed, which found item gene preferred by users and inherited them to the chosen items. The model can identified users' purchasing motivation better, so it can improve the recommendation accuracy and customer satisfaction.
出处 《辽宁大学学报(自然科学版)》 CAS 2009年第4期329-334,共6页 Journal of Liaoning University:Natural Sciences Edition
关键词 电子商务 个性化推荐 推荐模型 商品基因 推荐精度 E - commerce personalized recommendation recommendation model item gene recommendation accuracy.
作者简介 作者简介:夏秀峰(1964-),男,山东胶南人,博士,教授,从事数据库理论与技术研究
  • 相关文献

参考文献9

  • 1Gediminas Adomavicius, Alexander Tuzhilin. Toward the Next Generation of Recommender Systems:A Survey of the State - of - the - Art and Possible Extensions [ J ]. IEEE. 2005, 17 ( 6 ) : 734 - 749.
  • 2Resnick P, Varian HR. Recommender systems [ J ]. Communications of the ACM, 1997, 40 (3) :66 - 72.
  • 3许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:549
  • 4Greg Linden, Brent Smith ,Jeremy York. Amazon. corn recommendations : Item - to - Item collaborative filtering[ J]. IEEE Internet Computing, 2003,7 ( 1 ) : 76 - 80.
  • 5李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538. 被引量:93
  • 6Gediminas Adomavicius, YoungOK Kwon. New Recommendation Techniques for Multieriteria Rating Systems [ J ]. IEEE Intelligent Systems, 2007,22 (3) :48 - 55.
  • 7Yangming Zhang, Jiayin Qi, Huaying Shu, et al. Personalized product Recommendation based on Customer Value Hierarchy [ C ]. IEEE International Conference on In Systems, Man and Cybernetics,2007:3250 - 3254.
  • 8Yoshii K, Goto M, Komatani K, et al. An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model [ J ]. IEEE Transactions on Audio Speech and Language Processing,2008,16(2) :435 -447.
  • 9邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:149

二级参考文献94

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:149
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.

共引文献755

同被引文献22

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部