期刊文献+

一种新的基于Fisher判别的混合像元分解算法:室内控制实验结果分析 被引量:4

NEW ALGORITHM FOR SPECTRAL MIXTURE ANALYSIS BASED ON FISHER DISCRIMINANT ANALYSIS:EVIDENCE FROM LABORATORY EXPERIMENT
在线阅读 下载PDF
导出
摘要 混合像元分解技术(Spectral Mixture Analysis,SMA)是遥感图像处理的重要手段之一.传统方法假设每个端元具有稳定的光谱特征,然而端元内光谱差异普遍存在,这将导致混合像元分解精度的降低.针对该问题,提出了基于Fisher判别(Fisher Discriminant Analysis,FDA)的混合像元分解算法.Fisher判别对光谱各波段进行线性组合,使得转换后的光谱值分离度最大,即端元内的光谱差异较小而端元间的光谱差异较大.利用转换后的光谱对混合像元进行分解可以最大程度地减少端元内光谱差异对分解结果的影响.利用该方法对室内控制实验的模拟混合像元光谱进行分解,并与过去提出的几种混合像元分解技术进行比较,结果显示新方法相比传统方法在分解精度上有相当程度的提高. Spectral mixture analysis (SMA) is one of the most important methods in remote sensing image processing. Traditional SMA assumes a constant spectral signature for each endmember. However, the endmember spectral variability commonly exists, which leads to the lower accuracy of pixel unmixing. In order to solve this problem, a novel unmixing method based on Fisher discriminant analysis (FDA) was developed. FDA aimed to find a linear combination of the spectral bands for getting the largest separation degree among the endmember spectra, i.e. small variability of spectra inside one endmember group but a large difference of spectra among endmember groups. Mixture pixel was unmixed by using transformed spectra, as a result, the adverse impact caused by endmember spectral variability on unmixng accuracy could be diminished to a large extent. A laboratory experiment was designed to obtain a group of mixed spectra with endmember spectral variability. The measured spectra were used to test the performance of the new method and the traditional SMA methods. The comparison results suggest that the new method outperforms the traditional methods with considerable improvement of unmixing accuracy.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期476-480,共5页 Journal of Infrared and Millimeter Waves
基金 国家高技术研究发展计划(863计划)(2006AA12Z103) 教育部新世纪人才计划资助
关键词 混合像元分解 端元内光谱差异 FISHER判别 室内控制实验 spectral mixture analysis endmember spectral variability Fisher discriminant analysis laboratory experiment
作者简介 陈学泓(1985-),男,福建泉州人,硕士研究生,现从事资源环境遥感应用研究. 通讯作者:陈晋(1967-),博士,教授,Email:chenjin@ires.cn
  • 相关文献

参考文献12

  • 1Adams J B, Smith M O, Johnson P E. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander I site[ J]. Journal of Geophysical Research-Atmospheres, 1986,91 ( B8 ) : 8098-8112.
  • 2Atkinson P M, Cutler M E J, Lewis H. Mapping sub-pixel proportional land cover with AVHRR imagery [ J ]. International Journal of Remote Sensing, 1997,18(4) :917-935.
  • 3Marsh S E, Suitzer P, Kowalik W S, et al. Resolving the percentage of component terrains within single resolution elements [ J ]. Photogrammetric Engineering and Remote Sensng, 1980,46 ( 8 ) : 1079-1086.
  • 4Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models[ J ]. Remote Sensing of Environment, 1998,65 ( 3 ) :267-279.
  • 5Bateson C A, Asner G P, Wessman C A. Endmember bundies: A new approach to incorporating endmember variability into spectral mixture analysis [ J ]. IEEE Transactions on Geoscieace and Remote Sensing, 2000,38 ( 2 ) : 1083 - 1094.
  • 6Wu c s Normalized spectral mixture analysis for monitoring urban composition using ETM + imagery[ J]. Remote Sensing of Environment, 2004,93 ( 4 ) :480-492.
  • 7Garcia-Haro F J, Sommer S, Kemper T. A new tool for variable multiple endmember spectral mixture analysis ( VMESMA ) [ J ]. International Journal of Remote Sensing,2005,26 (10) :2135-2162.
  • 8Asner G P, Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation[ J]. Remote Sensing of Environment, 2000,74 ( 1 ) :99-112.
  • 9Song C H. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability [ J ]. Remote Sensing of Environment, 2005,95 ( 2 ) : 248-263.
  • 10Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis [ M ]. New Jersey : Prentice-Hall, 1982:496- 498.

同被引文献49

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部