期刊文献+

基于概率推理和决策树的教学系统的设计与实现 被引量:1

DESIGN AND IMPLEMENTATION OF TUTORING SYSTEM BASED ON PROBABILISTIC INFERENCE AND DECISION TREE
在线阅读 下载PDF
导出
摘要 提出一种结合概率推理与决策理论来有效构建C++智能教学系统ITS(Intelligent tutoring System)中学生学习模型的方法,以帮助ITS达到自适应教学的目的。首先,利用概率推理来识别学生的知识状态。其次,采用学习风格问卷调查(ILS)和机器学习的方法来分类预测学生的学习风格,并且实验数据也验证了这种方法的可靠性和有效性。通过将模块植入现有的ITS并投入实际的教学应用中,学生的反馈表明了本系统对提高学生的学习兴趣和学习效果具有积极作用。 This paper proposes a new approach which is based on probabilistic inference and learning style theory to efficiently build student learning model of C ++ intelligent tutoring system ( ITS ) for the purpose of providing this ITS with adaptive teaching strategies. Firstly,probabilistic inference based on Bayesian Network is applied to identify the knowledge states of students. Secondly, learning style survey (ILS) and machine learning tools are integrated to predict and classify the learning styles of students, and also the reliability and validity of this method was proved by real experimental data. The prototype system was transplanted into existing ITS and then put into our real teaching environment for trial. From students' feedback ,the result shows that system has positive influence on helping students enhance their interests and effectiveness in learning C ++ programming language.
出处 《计算机应用与软件》 CSCD 2009年第12期170-173,共4页 Computer Applications and Software
关键词 智能教学系统 学习风格 贝叶斯网 学生学习模型 Intelligent tutoring system Learning style Bayesian network Student leaning model
作者简介 杨诚一,硕士生,主研领域:中文信息处理,人机交互。
  • 相关文献

参考文献19

  • 1Nilsson N. Artificial intelligence : a new synthesis [ M ]. San Francisco : Morgan Kaufmann, 1998.
  • 2Suebnukarn S, Haddawy P. A collaborative intelligent tutoring system for medical problem-based learning[ C ]//Proceedings of the 9th International Conference on Intelligent User Interfaces, Funchal, Portugal, 2004. New York : ACM ,2004 : 14 - 21.
  • 3Crowley R, Medvedeva O. An intelligent tutoring system for visual classification problem solving [ J ]. Artificial Intelligence in Medicine, 2005,36(1) :8 - 117.
  • 4Felder R M, Spurlin J E. Applications, reliability, and validity of the In- dex of Learning Styles [ J ] . International Journal of Engineering Education ,2005,21 ( 1 ) :103 - 112.
  • 5Felder R M, Silverman L K. Learning and teaching styles in engineering education[ J ]. Engineering Education, 1988,78 ( 7 ) :674 - 681.
  • 6Jin C H, Se K Y, Hyong L J, et al. An adaptive learning system with learning style diagnosis based on interface behaviors[ C ]//Workshop Proceedings of International Conference on E-Learning and Games, Hangzhou, China, April 17 - 19,2006. Berlin : Springer, 2006 : 513 - 524.
  • 7Kelly D,Tangney B. First Aid for You, getting to know your learning style using machine [ C ]//Advanced Learning Technologies, Fifth IEEE International Conference, Kaohsiung, Taiwan, 2005. Los Alamitos : IEEE Computer Society ,2005 : 1 - 3.
  • 8Beck J E,Jia P, Mostow J. Assessing student proficiency in a reading tutor that listens[ C ]//Proceedings of the 9th International Conference on User Modeling,Johnstown, USA June 2003. Berlin:Springer,2003 : 323 - 327.
  • 9Beck J,Woolf B P. High-Level student modeling with machine learning [ C ]//Proceedings of the 5th international Conference on intelligent Tutoring Systems, Montreal, Canada 2000. London: Springer-Verlag, 2000:584 - 593.
  • 10Gertner A,Conati C, Vanlehn K. Procedural help in Andes : generating hints using a Bayesian Network student model[ C ]//Proceeding of 15th National Conference on Artificial Intelligence, Madison, USA, 1998. MentoPark:AAAIPress,1998:106 111.

同被引文献4

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部