期刊文献+

全景摄像机标定 被引量:6

Omni-directional camera calibration
在线阅读 下载PDF
导出
摘要 针对一般全景摄像机标定方法需要特殊的装置、设备和仅适用于满足单视点约束情况下的问题,依据从单视点指向三维点的向量投影到图像平面的过程可以用泰勒级数描述的理论,建立了双曲面全景摄像机标定方法的一般传感器参数模型.标定方法能够补偿镜子焦点与摄像机光心间的配置误差,能够应用于单视点约束没有精确满足的情况下.同时算法只需摄像机从不同位置获取棋盘格平面模板图像可以进行标定.摄像机和平面模板可以自由移动,而不需知道运动的先验知识,所以算法灵活方便,而模型的参数通过非线性优化得到,所以精度较高. In general, omni-directional camera calibration methods require special scene settings, expensive equipment, and a single viewpoint. To solve these problems, a method using a general sensor parameter model for hyperboloid omni-directional camera calibration was created based on the theory that the projection of a 3D real point onto a pixel of the image plane can be described by a Taylor series expansion. This model can compensate for any misalignment between the focal point of the mirror and the camera's optical center, and can be applied when a single viewpoint has not been met precisely. The proposed method only requires camera motion to be restricted to a planar pattern at a few different locations. Either the camera or the planar pattern can be freely moved without apriori knowledge of the motion, so the method is flexible. Model parameters are obtained by nonlinear optimization, giving it high accuracy.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第11期1239-1245,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60875025)
关键词 全景摄像机 三维重建 标定 泰勒级数 omni-directional camera 3 D metric reconstruction calibration Taylor series expansion
作者简介 作者简介:张浩鹏(1983-),男,博士研究生,E-mail:163.com; 王宗义(1964-),男,教授,博士生导师.
  • 相关文献

参考文献13

  • 1许俊勇,王景川,陈卫东.基于全景视觉的移动机器人同步定位与地图创建研究[J].机器人,2008,30(4):289-297. 被引量:25
  • 2CAUCHOIS C, BRASSART E. Reconstruction with the calibrated syclop sensor [ C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems. Takamatsu, Japan, 2000: 1493-1498.
  • 3GEYER C, DANIILIDIS K. Paracatadioptric camera calibration [J]. PAMI, 2002, 24(5) : 687-695.
  • 4BAKSTEIN H, PAJDIA T. Panoramic mosaicing with a 180° field of view lens [ C ]//Proceedings of the IEEE Workshop on Ominidirectional Vision. Copenhagen, Denmark, 2002: 60-67.
  • 5GLUCKMAN J, NAYAR S K. Ego-motion and omni-directional cameras[C]//Proceedings of the IEEE International Conference on Computer Vision. Bombay, India, 1998: 999-1005.
  • 6KANG S B. Catadioptric self-calibration [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. SC, USA, 2000: 201-207.
  • 7MICUSIK B, PAJDLA T. Estimation of omni-directional camera model from epipolar geometry [ C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. WI, USA, 2003 : 485-490.
  • 8BAKER S. A theory of catadioptric image formation[C]// International Conference on Computer Vision. Bombay, India, 1998: 35-42.
  • 9UKIDA H, YAMATO N, TANIMOTO Y. Omni-directional 3D measurement by hyperbolic mirror cameras and pattern projection[C]// IEEE International Instrumentation and Measurement Technology Conference. Victoria, Canada, 2008 : 365-370.
  • 10陈燕新,戚飞虎.一种新的基于随机Hough变换的椭圆检测方法[J].红外与毫米波学报,2000,19(1):43-47. 被引量:50

二级参考文献19

  • 1Kalviainen H,Image Vision Computing J,1995年,13卷,4期,239页
  • 2Xu L,Image Understanding,1993年,57卷,2期,131页
  • 3Xu L,Pattern Recognition Lett,1990年,11卷,5期,331页
  • 4Tardos J D, Neira J, Newman P, et al. Robust mapping and localization in indoor environments using sonar data[J]. The International Journal of Robotics Research, 2002, 21(4): 311-330.
  • 5Guivant J, Nebot E, Balker S. Localization and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17(10): 565-583.
  • 6Se S, Lowe D G, Little J J. Vision-based global localization and mapping for mobile robots[J]. IEEE Transactions on Robotics,2005, 21(3): 364-375.
  • 7Davison A J. Real-time simultaneous localisation and mapping with a single camera[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. Piscataway, NJ, USA: IEEE, 2003. 1403-1410.
  • 8Ishiguro H. Development of low-cost compact omnidirectional vision sensors and their applications[DB/OL]. http://www.ai.soc.i.kyoto-u.ac.jp/publications/98/98conf04.pdf, 1998.
  • 9Bunschoten R. Mapping and Localization from a Panoramic Vision Sensor[DB/OL]. http ://www. science.uva, nl/research/ias/alumni/ph. d.theses/theses/RolandBunschoten.pdf, 2003.
  • 10Andreasson H, Treptow A, Ducker T. Localization for mobile robots using panoramic vision, local features and particle filter[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2005. 3348-3353.

共引文献73

同被引文献35

  • 1柳宗浦,赵曙光,潘翔鹤,赵俊.一种融合Kalman预测和Mean-shift搜索的视频运动目标跟踪新方法[J].光电子技术,2009,29(1):30-33. 被引量:7
  • 2高浩军,杜宇人.基于视频序列图像的车辆测速研究[J].电子测量技术,2007,30(2):42-45. 被引量:11
  • 3徐子健.全周影像行车辅助系统发展及市场趋势[J].车辆研测资讯,2010(6):18-22.
  • 4公安部交通管理局.中华人民共和国道路交通事故统计年报(2011年度)[Z].无锡市:公安部交通管理科学研究所,2011.
  • 5丁鑫.全景视觉泊车辅助系统研究[D].杭州:浙江大学,2008:77-83.
  • 6涂渊耀.嵌入式环车监控系统[D].台北:国立交通大学,2006:5-13,35-40.
  • 7上海杰图软件技术有限公司.鱼眼标定方法和装置[P].中国:CNl02096923A,2011.6.15.
  • 8刘育志.鱼眼摄影机校正与多视点影像接合[D].台湾:国立交通大学,2007:15-16,30-33.
  • 9ZHANG Zhengyou. A flexible new technique for camera cal- ibration [ J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2000, 22( 11 ) : 1330 -1334.
  • 10TSAI R Y. An efficient and accurate camera calibration technique for 3 D machine vision [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach, USA, 1986.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部