期刊文献+

基于神经网络的水果自动分类系统设计 被引量:18

Design of a Fruit Automatic Classification System Based on Neural Network
在线阅读 下载PDF
导出
摘要 深加工是目前我国水果产业发展的主方向。设计了基于神经网络的自动水果分类系统,包括系统的硬件构成和分类程序。其中图像的特征提取是水果分类程序的前提。提取了水果图像的形状、颜色、纹理3种主要特征,将3种特征向量输入到神经网络分类器进行分类识别。仿真结果表明,该方法实时性好,分类准确率高,可满足水果深加工生产的实用需要。 Fruit' s deep processing is currently the main direction of the fruit industrial development in China. An automatic classification system of fruit based on neural network was designed, including the hardware composition and classification program of the system. Feature extraction is the premise of the classification program of fruits. Three main features such as figure, color and texture of the fruit images were extracted. They were input to BP neural network classifier for classification. The simulation results showed that this technique was of good real-time and high rate of classified accuracy and it could meet the practical needs of fruit' s deep processing.
出处 《安徽农业科学》 CAS 北大核心 2009年第35期17392-17394,17439,共4页 Journal of Anhui Agricultural Sciences
基金 广东省自然科学基金项目(8152902001000014) 广东省高等学校自然科学重点研究项目(05z025)
关键词 特征提取 特征向量 BP神经网路 分类 Feature extraction Feature vector BP neural network Classification
作者简介 吕秋霞(1978-),女,湖北公安人,硕士,讲师,从事智能信息处理、视频检测研究。
  • 相关文献

参考文献7

  • 1TIAN Y Q,MCCALL D G,TAN J. Intelligent machine vision for meat eating quality assessment[ C ]//Proceedings of the First Joint Australia and New Zealand Biennial Conference: DICTA' 97 ( Digital Image Computing Techniques and Applications and IVCN2' 97. ). Auckland, New Zealand : Massey University,Albany Campus, 1997:567 - 572.
  • 2O' FARREL M,LEWIS E,FLANAGAN C,et al. Comparison of kNN and neural network methods in the classification of spectral data from an optical fiber-based sensor system used for quality control in the food industry[J]. Sensors and Actuators,2005,111/112:354 - 362.
  • 3O' FARREL M,LEWIS E,FLANAGAN C,et al. Design of a system that uses optical-fiber sensors and neural networks to control a large-scale industrial oven by monitoring the food quality online[J]. IEEE Sensors Journal, 2005,5(5) :1407 - 1420.
  • 4TRUEBA E A,OROPEZA M J L,ORTIZ C A,et al. Identification of eroded zones with digital images using artificial neural networks [ J ]. Agrociencia,2004 ,38 (6) :573 - 581.
  • 5AHMAD I S,REID J F,PAULSEN M R,et al. Color classifier for symptomatic soybean seeds using image processing[J]. Plant Disease,1999,83(4) : 320 - 327.
  • 6Kenneth RCasiltman.数字图像处理[M].北京:电子工业出版社,2002..
  • 7章毓晋.图像分析[M].2版.北京:清华大学出版社,2005.

共引文献29

同被引文献152

引证文献18

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部