期刊文献+

基于支持向量机的胶带机钢丝芯断丝状态信号识别 被引量:3

Signal recognition of the state of broken wire-core of the belt conveyor based on support vector machine
原文传递
导出
摘要 针对强力输送带钢丝芯漏磁检测信号成分复杂、噪声干扰严重、钢丝芯断丝损伤程度难以识别等问题,采用小波-支持向量机算法对钢丝芯断丝信号进行提取及识别。首先用小波分析技术滤除检测信号的噪声,并根据钢丝缺陷先验知提取断丝特征,形成断丝特征样本集;采用支持向量机对断丝损伤信号进行识别分级;最后使用实际数据进行实验验证。结果表明,该算法识别结果与实际情况基本一致,为钢丝芯损伤监测研究提供了一种新的方法。 Contraposing the problems of the complex composition and the serious noise of the magnetic flux leakage testing signal of the wire-core of heavy intensity conveyor belt, and the damage degree of the broken wire-core is difficultly identified, so the signals of the broken wire-core are extracted and discerned by using the wavelet-support vector machine algorithm. First, the noises of the detection signal are filtered with the technology of wavelet analysis, the features of the broken wires are verified and eollected in advance to form a sample set according to the defects of the wires. Second, the damage signals of the broken wires are identified and classyfied with the support vector machine. Finally, the experimental verification is carried out by using the actual data. The result shows that the identification results of this algorithm are basically consistent with the actual situation. It provides a new method for monitoring the broken wires of the wire core.
作者 程羽 张晓光
出处 《矿山机械》 北大核心 2009年第21期46-50,共5页 Mining & Processing Equipment
关键词 胶带机 输送带 钢丝芯 漏磁检测 小波分析 支持向量机 belt conveyor belt wire-core magnetic flux leakage testing wavelet analysis sup-port vector machine
作者简介 程羽,男,1982年生,在读硕士研究生,研究方向为智能仪器检测。
  • 相关文献

参考文献3

二级参考文献79

共引文献103

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部