期刊文献+

应用IMF分量包络矩阵的奇异值提取机械故障特征 被引量:2

Applying Singular Value of IMF Envelope Matrix to Extract the Characteristics of Mechanical Failures
在线阅读 下载PDF
导出
摘要 将信号包络和矩阵奇异值引入到机械故障诊断中,提出采用IMF(intrinsic mode function)分量包络矩阵的奇异值分解方法提取机械故障特征的方法,该方法全面反映了机械内部损伤情况,计算简单、提取特征明显。仿真实验表明,应用IMF分量包络矩阵的奇异值分解方法可有效、快速地提取机械故障特征参数,该方法在机械转子故障诊断中的应用结果较为满意。 The signal envelope and matrix of the singular value were introduced to machinery fault diagnosis,use of IMF envelope matrix and singular value to extract the characteristics of mechanical failures was proposed. This method is a more traditional method of feature extraction, feature extraction with the obvious advantages of simple calculation. Simulation results show that this method can effectively extract the characteristic parameters. They will be applied to the rotor mechanical fault feature extraction to obtain more satisfactory results.
机构地区 西北工业大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第22期2647-2649,共3页 China Mechanical Engineering
基金 中国博士后科学基金资助项目(2008044119)
关键词 包络线 奇异值 故障特征 IMF envelope singular value fault characteristics intrinsic mode function(IMF)
作者简介 裘焱,男,1977年生。西北工业大学动力与能源学院博士研究生。主要研究方向为振动信号处理、机械故障诊断。 吴亚锋,男,1963年生。西北工业大学动力与能源学院教授、博士研究生导师。 李野,男,1984年生。西北工业大学动力与能源学院硕士研究生。
  • 相关文献

参考文献5

二级参考文献18

共引文献79

同被引文献32

  • 1周晓飞,杨静宇,姜文瀚.核最近邻凸包分类算法[J].中国图象图形学报,2007,12(7):1209-1213. 被引量:6
  • 2Yang Yu, Yu Dejie, Cheng Junsheng. A fault diagno- sis approach for roller bearing based on IMF envelope spectrum and SVM [J]. Measurement, 2007, 40: 943--950.
  • 3Li Meng, Zhao Ping. The application of wavelet pack- et and SVM in rolling bearing fault diagnosis[A]. 2008 International Conference on Mechatronics and Automation(1CMA) [C]. 2008,1/2 : 505--508.
  • 4Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Trans. on Neural Networks, 2002,13(2) :415--425.
  • 5Zhou Xiaofei, Shi Yong. Nearest neighbor convex hull classification method for face recognition[A]. Pro- ceedings of the 9th International Conference on Com- putational Science[C]. 2009,5 545 : 570--577.
  • 6Mark G Frei, Ivan Osorio. Intrinsic time-scale decom- position: time-freqeucny-energy analysis and real-time filtering of non-stationary signals [J]. Proceedings of the Royal Society, A, 2007,463:321--342.
  • 7Cheng Junsheng, Yu Dejie, Tang Jiashi. Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery[J]. Shock and Vi- bration, 2009,16(1) :89--98.
  • 8Bearing Data Center. Case western reserve university bearing data [EB/OLd. [2011-12-10]. http://cse- groups, case. edu/bearingdatacenter/pages/download- data-file.
  • 9Chapelle O, Vpanik V. Model selection for support vector machines[J]. Advances in Neural Information Processing Systerns 12, 2000,12 :230--236.
  • 10Xian Guangming, Zeng Biqing. An effective and novel fault diagnosis technique based on EMD and SVM[J]. Neural Network World, 2010,20(4) :427--439.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部