期刊文献+

稀疏两相湍流的惯性颗粒倾向性弥散 被引量:1

INERTIA PARTICLE PREFERENTIAL DISPERSION IN DILUTE TWO-PHASE TURBULENT FLOWS
在线阅读 下载PDF
导出
摘要 气相采用大涡模拟、颗粒相采用拉格朗日轨道模型的方法对后台阶突扩流、充分发展槽道流和圆湍射流3种典型的稀疏气固两相流动进行了数值模拟,研究了颗粒倾向性弥散的特征和规律。研究表明颗粒的跟随性和倾向性相联系,颗粒惯性和大涡结构同时决定颗粒的倾向性分布特征。Stokes数量级为1(气相时间参考尺度取为宏观特征时间尺度)左右的颗粒,倾向性分布特征最强烈。颗粒倾向分布于低涡量(或是低脉动速度)的湍流区域。 Preferential dispersion of the particles was numerically studied in three types of turbulent flows, namely, the flow over a backward-facing step, the fully developed channel flow and the round jet flow. Gas-phase was simulated by means of large eddy simulation and particle-phase was tracked by particle trajectory model. It's shown that inertia particles have preferential dispersion in the three turbulent flows, and the property of preferential motion of the particles is related to the particle following property. The particle preferential dispersions are determined both by particle inertia and by large eddy structures. Particles with Stokes number in the order of magnitude 1(based on the macro time-scale of fluid flow) have the strongest preferential distribution in large scale structures and they tend to accumulate in the turbulent regions with low vorticity or low fluctuating velocity.
出处 《力学学报》 EI CSCD 北大核心 2009年第6期821-827,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(50706021) 高校博士点基金(20070003018)资助项目~~
关键词 颗粒倾向性分布 颗粒弥散 Stokes数 稀疏两相湍流 大涡模拟 particle preferential distribution, particle dispersion, particle Stokes number, dilute two-phase turbulent flows, large eddy simulation (LES)
作者简介 王兵,E-mail:wbing@tsinghua.edu.cn
  • 相关文献

参考文献12

  • 1王兵,张会强,王希麟.颗粒在大涡结构中的弥散[J].力学学报,2005,37(1):105-109. 被引量:11
  • 2容易,张会强,王希麟.气固两相圆湍射流中湍流调制的数值模拟[J].清华大学学报(自然科学版),2008,48(2):260-263. 被引量:5
  • 3Squires KD, Eaton JK. Preferential concentration of particles by turbulence. Physics of Fluids A, 1991, 3(5): 1169-1178.
  • 4Fessler JR, Kulick JD, Eaton JK. Preferential concentration of heavy particles in a turbulent channel flow. Physics of Fluids, 1994, 6(11): 3742-3749.
  • 5Zhang H, Ahmadi G. Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows. Journal of Fluid Mechanics, 2000, 406:55-80.
  • 6Maxey MR. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 1987, 174:441-465.
  • 7Marchioli C, Soldati A. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 2002, 468:283-315.
  • 8Narayanan C, Lakehal D, Botto L, et al. Mechanisms of particle deposition in a fully developed turbulent open channel flow. Physics of Fluids, 2003, 15:763-775.
  • 9Picciotto M, Marchioli C, Reeks MW, et al. Statistics of velocity and preferential accumulation of micro-particles in boundary layer turbulence. Nuclear Engineering and Design, 2005, 235:1239-1249.
  • 10Picciotto M, Marchioli C, Soldati A. Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Physics of Fluids, 2005, 17: 098101-098105.

二级参考文献12

  • 1容易,张会强,王希麟.气固两相圆湍射流流动的大涡模拟[J].清华大学学报(自然科学版),2007,47(2):240-243. 被引量:4
  • 2Tsuneaki Ishima, Koichi Hishida, Masanobu Maeda. Effect of particle residence time on particle dispersion in a plane mixing layer. J of Fluids Engineering, 1993, 115(12):751~759.
  • 3Yohei Sato, Koichi Hishida, Masanobu Masda. Effect of dispersed phase on modification of turbulent flow in a wall et. J of Fluids Engineering, 1996, 118(6): 307~315.
  • 4Fan QL, Wang XL. Large eddy simulation of a horizontal particle-laden turbulent planar jet. Computational Mechanics, 2001, 27:128~137.
  • 5Ruck B, Makiola B. Particle dispersion in a single-sided backward-facing step flow. Int J Multiphase Flow, 1988,14:787~800.
  • 6Yuu S, Ikeda K, Umekage T. Flow-field prediction and experimental verification of low Reynolds number gas-particle turbulent jets [J]. Colloid Surface A, 1996, 109:13 -27.
  • 7Yuu S, Ueno T, Umekage T. Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation [J]. Chem Eng Sci, 2001, 56(14): 4293-4307.
  • 8Li C, Mosyak A, Hetsroni G. Direct numerical simulation of particle-turbulence interaction [J]. Int J Multiphase Flow, 1999, 25(2): 187-200.
  • 9Verzicco R, Orlandi P. A finite difference scheme for three-dimensional incompressible flows in cylindrical coordinates[J]. J Comput Phys, 1996, 123(2): 402-414.
  • 10Lei K, Taniguchi N, Kobayashi T. Large eddy simulation of particle-laden turbulent channel flow considering SGS coupling [J]. JSME Int J, 2002, 45(1) : 164 - 173.

共引文献14

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部