期刊文献+

并行型Ramsey数DNA计算模型

The Parallel Type of DNA Computing Model for Solving Ramsey Number Problem
在线阅读 下载PDF
导出
摘要 求解Ramsey数的困难在于需要搜索的解空间太大,而传统的电子计算机无法在有效的时间和存储空间上进行求解.由于DNA计算具有巨大的并行性和高密度存储能力等优点,文中研究了Ramsey数的DNA计算模型.针对传统的Ramsey数DNA计算模型存在的DNA序列量过多和序列过长的不足,利用DNA分子的特性以及生物操作将非解尽可能较早地消除,提出了并行型Ramsey数DNA计算模型,并以R(3,10)为例,给出了具体的求解步骤. The difficulty of solving the Ramsey number is that the solution space is too large to solve by traditional computer in effective time and storage space. Moreover, for the traditional DNA computing model, lots of oligonuleotides should be designed and generated much longer DNA sequences which are not convenient for bio-operation. This paper proposes a DNA computing model for Ramsey number based on the enormous parallelism and high-density storage capacity of DNA molecules. The advantage of this model is that many false solutions could be deleted as early as possible. Finally, the authors take R(3,10) as an example and give the concrete steps for solving the problem.
作者 许进 范月科
出处 《计算机学报》 EI CSCD 北大核心 2009年第12期2320-2324,共5页 Chinese Journal of Computers
关键词 并行型 DNA计算 RAMSEY数 parallel type DNA computing Ramsey number
作者简介 许进,男,1959年生,教授,博士生导师,研究兴趣为DNA计算机、神经网络、遗传算法、图论等.Email:jxu@pku.edu.cn 范月科,男,1959年生,博士,研究兴趣为DNA计算和DNA计算机、图论等.E-mail:yuekefan@sohu.com.
  • 相关文献

参考文献16

  • 1Burr S A. Determining generalized Ramsey numbers is NP- hard. Ars Combinatoria, 1984, 17.. 21 25.
  • 2王清贤.Ramsey数在计算机科学中的应用[J].信息工程学院学报,1997,16(1):1-6. 被引量:3
  • 3Radziszowski S P. Small Ramsey numbers. Electronic Journal of Combinatorics Dynamical Survey, 2006, 11: 3-36.
  • 4Tse K K. On the Ramsey number of the quadrilateral versus the book and the wheel. Australasian Journal of Combinatorics, 2003, 27:163-167.
  • 5Adleman L M. Molecular computation of solution to combinatorial problems. Science, 1994, 266: 1021- 1024.
  • 6Lipton R J. DNA solution of hard computation problems. Science, 1995, 268(4): 542- 545.
  • 7Ouyang Q, Kaplan P D, Liu S et al. DNA solution of the maximal clique problem. Science, 1997, 278(17): 446- 449.
  • 8Liu Q, Wang L, Frutos A et al. DNA computing on surfaces. Nature, 2000, 403: 175-179.
  • 9Braich R S, Chelyapov N, Johnson C et al. Solution of a 20 variable 3 SAT problem on a DNA Computer. Science, 2002, 296(5567): 430 -434.
  • 10Mckay B D, Radziszowski S P. R(4, 5) = 25. Journal of Graph Theory, 1995, 19(3):309-322.

二级参考文献20

  • 1XU Jin,QIANG Xiaoli,FANG Gang,ZHOU Kang.A DNA computer model for solving vertex coloring prob-lem[J].Chinese Science Bulletin,2006,51(20):2541-2549. 被引量:12
  • 2Zhang Kai Pan Linqiang Xu Jin.A global heuristically search algorithm for DNA encoding[J].Progress in Natural Science:Materials International,2007,17(6):745-749. 被引量:4
  • 3Radziszowski S P. Small ramsey numbers. Electronic Journal of Combinatorics Dynamical Survey, 2006, 11:3-36
  • 4Mckay B D, Radziszowski S P. R(4, 5)= 25. Journal of Graph Theory, 1995, 19:309-322
  • 5Mckay B D, Zhang K M. The Value of the Ramsey Number R(3,8). Journal of Graph Theory, 1992, 16:99-105
  • 6Adleman L M. Molecular computation of solution to combinatorial problems. Science, 1994, 266:1021-1024
  • 7Liu W B, Xu J. The hamiltonian cycle problem based on DNA computing//Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning. 2002, 1 : 313-317
  • 8Morimoto N, Arita M, Suyama A. Solid-phase DNA solution to the hamiltonian path problem. DIMACS, Series in Discrete Mathematics and Theoretical Computer Science, 1999, 48:193-206
  • 9Ouyang Q et al. DNA solution of the maximal clique problem. Science, 1997, 278:446-449
  • 10Pan L Q, Liu Y C et al. A surface-based DNA algorithm for the maximal clique problem. Chinese Journal of Electronics, 2002, 11(4): 469-471

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部