期刊文献+

基于SIFT的图像建模算法研究 被引量:2

Research on Algorithm of IBM Based on SIFT
在线阅读 下载PDF
导出
摘要 为解决飞行或航海模拟器中建模手段单一、真实感较差等问题,研究了基于SIFT的图像建模算法.该算法针对目前图像建模算法中存在的人工参入图像匹配负担较大问题,实现了基于尺度不变特征的图像自动匹配;针对重建物体视觉外观真实感较差问题,采用了图像融合算法首先对纹理图像进行处理,然后再进行纹理映射的方法.实验结果表明,算法具有较好的鲁棒性,生成的三维模型准确真实,较之以往算法具有建模简单、操作方便,真实感强的特点. Aiming at the problem of low efficiency and low photorealistic models in the current virtual simulator, a new algorithm of image-based modeling(IBM) based on scale invariant feature transform (SIFT) was studied. To overcome the shortcoming of manual matching in IBM, a new algorithm based on SIFT was provided. In order to improve the third dimension of 3D reconstruction, texture image extraction and fusion were adopted. Experimental results show that the 3D models generated by this paper are sufficiently accurate and photorealistic. Compare with the previous algorithm of image-based modeling, it is simpler, more convenient and easier to create photorealistic models.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第12期1-3,8,共4页 Microelectronics & Computer
基金 辽宁省自然科学基金项目(20082176) 浙江大学CAD@CG国家重点实验室开放基金项目
关键词 基于图像建模 尺度不变特征变换 层次建模 图像融合 image-based modeling SIFT stratified reconstruction texture image fusion
作者简介 易成涛 男,(1975-),博士研究生,讲师.研究方向为交通信息工程及控制.
  • 相关文献

参考文献9

  • 1刘钢,彭群生,鲍虎军.基于多幅图像的场景交互建模系统[J].计算机辅助设计与图形学学报,2004,16(10):1419-1424. 被引量:13
  • 2Tan P, Zeng G, Wang J, et al. Image- based tree modeling[ J ]. ACM Trans. on Graphics, 2007, 26 ( 3 ) : 877 - 884.
  • 3Van den Hengel Anthony, Dick Thorsten, Thormahlen Torr, et al. VideoTrace: rapid interactive scene modelling from video[C]//Proceedings of SIGGRA-PH. California; Acre Press, 2007.
  • 4Barbara Zitova, Jan Flusser. Image registration methods: a survey[ J ]. Image and Vision Computting, 2003 (21) : 977 - 1000.
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[ J ]. IEEE Trans. Pattern Analysis and Machine Intelli - gence, 2005,27(10) : 1615 - 1630.
  • 6王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 7Lowe D G. Distinctive image features from scale - invariant keypoints[ J ]. International Journal of Computer Vision, 2004, 60(2) :91 - 110.
  • 8田伟刚,郭雷,黄雷.一种应用于图像配准中的点特征匹配算法[J].微电子学与计算机,2008,25(3):172-174. 被引量:14
  • 9Bougnoux S. From projective to euclidean space under any practical situation, a criticism of self- calibration [C]// Proceedings of the 6th International Conference on Computer Vision. India, Bombay, 1998:790- 796.

二级参考文献33

  • 1[3]Kuglin C D,Hines D C.The Phase Correlation Image alignment method[C].IEEE Conference on Cybernetics and Society,New York,1975:163-165.
  • 2[4]David G Lowe.Object Recognition from Local Scale-Invariant Features[C].7th International Conference on Computer Vision,1999:1150-1157.
  • 3[5]David G Lowe.Distinctive Image Features from Scale-Invariant Interest Points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 4[6]Harris C Stephens.A Combined Corner and Edge Detector[J].4th Alvey Vision Conference.1988,60(2):147-151.
  • 5[7]Faugeras O,Robert L.What can two images tell us about the third one[C].Proceedings of the Europe Conference on Computer Vision,Sweden,1994.
  • 6[8]Koenderink J.The structure of images[J].Biological Cybernetics,1984,50:363-396.
  • 7[9]Lindeberg T.Scale-Space for discrete Signals[J].IEEE Transactions PAMI,1980,207:187-217.
  • 8[10]Babaud J,Witkin A P,Baudin Metal.Uniqueness of the Gaussian kernel for scale-space filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,8(1):26-33.
  • 9陈昕,向健勇,杨宜禾.不变性理论用于空中目标的识别[J].红外与毫米波学报,1997,16(1):39-44. 被引量:16
  • 10Hartley R, Sturm P. Triangulation[J]. Computer Vision and Image Understanding, 1997, 68(2): 146~157

共引文献48

同被引文献16

  • 1Aykut Ekinci M M.Palmprint recognition by applying wavelet-based kernel PCA[J].Journal of Computer Seience & Technology,2008(05):851-861.
  • 2Hu M K.Visual pattern recognition by moment invariants[J].IRE Trans Inf Theory,1962(8):179-187.
  • 3Lowe David G.Object recognition from Local scale-invariant features[J].International Conference on Computer Vision,Corfu,September,1999,3(1):1150-1157.
  • 4Lowe David G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision.2004,60(2):91-110.
  • 5WANG Hong-Bing,PENG Zhen-Ming,LIU Jie,et al.Feature points detection and tracking based on SIFT combining with KLT method[J].Proc.SPIE.2009(7506):75062N1-10.
  • 6WANG Yun-Xin,WANG Da-Yong,LIU Tie-Gen,et al.Local SIFT analysis for hand vein pattern verification[J].Proc,SPIE.2009(7512):751204 1-7.
  • 7Murat Ekinci,Murat Aykut.Human Gait Recognition Based on Kernel PCA Using Projections[J].Journal of Computer Science & Technology,2007,22(6):867-876. 被引量:4
  • 8刘焕敏,王华,段慧芬.一种改进的SIFT双向匹配算法[J].兵工自动化,2009,28(6):89-91. 被引量:23
  • 9张洁玉,白小晶,徐丽燕,陈强,夏德深.基于空间分布描述符的SIFT误匹配校正方法[J].中国图象图形学报,2009,14(7):1369-1377. 被引量:14
  • 10片兆宇,孟祥萍,舒英利.基于多特征图像显著目标的自动识别[J].红外与毫米波学报,2009,28(4):293-297. 被引量:2

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部