期刊文献+

一种对背景干扰及遮挡鲁棒的视频目标跟踪算法 被引量:6

Visual Tracking Algorithm Robust to Distractor and Occlusion
在线阅读 下载PDF
导出
摘要 为了在背景干扰、遮挡环境下可靠地跟踪目标,提出了一种特征融合式粒子滤波跟踪算法,改造了传统的边缘方向直方图模型,使其对平移更敏感,以利于提高跟踪精度;利用均值漂移模块检测干扰,依据两种特征对目标和干扰的区分能力调节它们在观测模型中的权重,以抑制干扰;设计混合相似度指标检测遮挡,实时调整系统模型以适应遮挡环境;通过在模型更新过程中引入相互监督机制,缓解模型漂移问题,实验结果表明,算法是有效的。 To track object in the case of background distractor and occlusion, a particle filter based tracker was proposed. Traditional edge direction histogram is reconstructed to become more sensitive to translation with the aim of improving tracking accuracy. Mean shift module is used to detect distractor. Weight of each histogram models can be adjusted according to its ability to distinguish the object and dis- tractor. Hybrid similarity measurement is designed to detect occlusion, and the detecting result is used to adjust system model. Interactive supervision Mechanism is introduced into the model updating process to alleviate the problem of model drift. Experimental results show the effectiveness of the algorithm.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第11期2292-2294,共3页 Computer Measurement &Control
基金 国家自然科学基金重点项目(60634030) 高等学校博士学科点专项科研基金资助(20060699032)
关键词 目标跟踪 粒子滤波 特征融合 遮挡处理 object tracking particle filter feature fusion occlusion handling
作者简介 左军毅(1975-),男,西安人,工学博士,主要从事多目标跟踪理论及应用、信息融合、飞行器制导与控制等方向的研究。
  • 相关文献

参考文献5

  • 1Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Transactions on Image Processing, 2004. 13 (11): 1491-1506.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. 25 (5): 564-577.
  • 3Nummiaro K, Meier E K, Gool L V. An adaptive color-based particle filter [J].Image and Vision Computing, 2003. 21 (1): 99-110.
  • 4Qiang Zhu, Shed Avidan, Mei-Chen Yeh, Kwang-Ting Cheng. Fast human detection using a cascade of histograms of oriented gradients [A]. Proc of IEEE Conference on Computer Vision and Pattern Recognition [A]. New York, USA: IEEE. 2006. 1491-1498.
  • 5周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12

二级参考文献9

  • 1Yizong Cheng. Mean shift, mode seeking, and clustering[ J ].IEEE Trans on PAMI, 1995,17(8) :790- 799.
  • 2Amaud Doucet, et al. On sequential monte carlo sampling methods for bayesian filtering [ J]. Statistics and Computing, 2000,10:197 - 208.
  • 3Morelande M R, et al. Manoeuvring target tracking in clutter using particle filters[ J] .IEEE Trans on Aerospace and Electronic Systems, 2005,41 ( 1 ) : 252 - 270.
  • 4潘吉彦,胡波,麦克尔.费希尔.一种基于复合相关相似度的图像跟踪算法[P].中国专利:200610024303.2,2006—03—02.
  • 5Shaohua Zhou, et al. Visual tracking and recognition using ap-pearance-adaptive models in particle filters[ J ]. IEEE. Trans on Image Processing,2004,13(11). 1491 - 1506.
  • 6M Sanjeev Arulampalam, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [ J ]. IEEE Trans on Signal Processing,2002,50(2): 174- 188.
  • 7Weiming Hu, et al. A survey on visual surveillance of object motion and behaviors[ J]. IEEE Trans on Systems, Man, and Cybemeltics, 2004,34(3) : 334 - 352.
  • 8Michael Acheson Isard. Visual motion analysis by probabilistic propagation of conditional density [ D ]. UK: Department of Engineering Science University of Oxford. 1998.
  • 9Wolfe J M. Guided search 2.0 a revised model of visual search [ J ]. Psychonomic Bulletin& Review. 1994,1 (2) : 202 - 238.

共引文献11

同被引文献47

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部