期刊文献+

基于Moore-Penrose逆矩阵的选择性集成 被引量:3

Selective Ensemble Based on Moore-Penrose Pseudo-inverse
在线阅读 下载PDF
导出
摘要 本文提出了一种基于Moore-Penrose逆矩阵的新型选择性集成学习算法。先独立训练出一批个体学习器并为每个学习器指定一个初始权值,然后应用基于Moore-Penrose逆矩阵的算法对这些权值进行优化,最后选择权值较大的个体学习器进行最终集成。本文提出的选择性集成学习算法方法简单、易于实现,执行效率高。对8个真实数据集的实验表明,该集成学习算法相对于一般的集成学习算法,可以采用更少的学习器而获得更高的泛化能力。 A novel selective ensemble learning algorithm is proposed based on Moore-Penrose pseudo-inverse. After individual learning machines had been trained independently, a set of initial weights were assigned to the individuals. Then an method based on Moore-Penrose pseudo-inverse was applied to optimize these weights for a minimum generalization error, and only those with high weights would be chosen for the final ensemble. Experiments show that this method is efficient in the computation complexity and easy to be implemented. Moreover, the method can achieve higher generalization ability with a much smaller ensemble size than other popular ensemble approaches.
出处 《光电工程》 CAS CSCD 北大核心 2009年第11期140-144,共5页 Opto-Electronic Engineering
基金 国家重点基础研究规划基金(2005CB724303)
关键词 机器学习 集成学习 选择性集成 Moore.Penrose逆矩阵 machine learning ensemble learning selective ensemble Moore-Penrose pseudo-inverse
作者简介 杨晓霜(1985-),女(汉族),安徽安庆人。硕士,主要研究对象是图像处理和模式识别。E-mail:062021028@fudan.edu.cn。
  • 相关文献

参考文献8

  • 1Dietterich T. Machine learning research: four current directions [J]. AI Magazine(S0738-4602), 1997, 18(4): 97-136.
  • 2Efron B, Tibshirani R. An Introduction to the Bootstrap [M]. New York - Chapman & Hall, 1993.
  • 3Freund Y. Boosting a weak algorithm by majority [J]. Information and Computation(S0890-5401), 1995, 121(2): 256-285.
  • 4Zhou Z, Wu J, Tang W. Ensembling neural networks: many could be better than all [J]. Artificial Intelligence(S0004-3702), 2002, 137: 239-263.
  • 5Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning [M]//Tesauro G. Advances in Neural lnformation Processing Systems, Cambridge, MA, USA: MIT Press, 1995, 7: 231-238.
  • 6安凯,宋黎定,马佳光.卫星姿态滑模变结构控制的广义逆方法[J].光电工程,2007,34(5):1-4. 被引量:4
  • 7Blake C, Keogh E, Merz C. UCI Repository of machine learning databases [EB/OL]. (2008-8-15). http://www.ics.uci.edu /-mlearn/MLRepository.html.
  • 8Houck C, Joines J, Kay M. A genetic algorithm for function optimization: A Matlab implementation, Tech Rep: NCSU-IE-TR-95-09 [R]. 1995.

二级参考文献9

  • 1Bang H.C, Lee J.S, Eun Y.J. Nonlinear Attitude Control for a Rigid Spacecraft by Feedback inearization[J]. KSME International Journal, 2004, 18(2): 1-7.
  • 2Wie B, Barba P.M. Quaternion Feedback for Spacecraft Large Angle Maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3): 360-365.
  • 3Wie B, Weiss H, Arapostathis A. Quatemion Feedback Regulator for Spacecraft Eigenaxis Rotations[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3): 375-380.
  • 4Wie B, Lu J. Feedback Control Logic for Spacecraft Eigenaxis Rotations under Slew Rate and Controls Constraint[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1372-1379.
  • 5Crassidis J.L, Markley F.L. Sliding Mode Control using Modified Rodrigues Parameters [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383.
  • 6Lin C.E Advanced Control Systems Design [M]. USA: Prentice-Hall, 1994.
  • 7Rao C.R. Linear Stantistical Inference and Its Application [M]. USA: John Wiley & Son, Inc, 1995.
  • 8安凯.混合神经网络及其在非线性系统控制中的应用[J].光电工程,2000,27(5):1-4. 被引量:4
  • 9安凯,马佳光,傅承毓.一种运动目标位置合成的快速算法[J].光电工程,2001,28(4):5-8. 被引量:9

共引文献3

同被引文献82

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:23
  • 3Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 4Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 5Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 6Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 7Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 8Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 9Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 10Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.

引证文献3

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部