摘要
BACKGROUND: Genetic abnormalities and changes in gene expression have been shown in various grades of glioma. However, the relationship between gene expression patterns and pathways related to malignant transformation of glioma remains poorly understood. OBJECTIVE: To screen differentially expressed genes between normal and all-trans retinoic acid-treated glioma cell line SHG-44 cells with a complementary DNA (cDNA) microarray. DESIGN, TIME AND SETTING: The genomics, in vitro study was performed at the Laboratory of Neurobiology, Third Military Medical University of Chinese PLA, China from January to October 2007. MATERIALS: The glioma cell line SHG-44 was provided by the Third Military Medical University of Chinese PLA. AII-trans retinoic acid was purchased from Sigma, USA. cDNA microarray was purchased from City University of Hong Kong. METHODS: The glioma cell line SHG-44 was treated with 10 μmol/L all-trans retinoic acid for 3 days Differentiation-related genes were determined using cDNA microarray. MAIN OUTCOME MEASURES: Gene expression patterns were compared between normal and all-trans retinoic acid-treated SHG-44 cells. Differentially expressed genes were randomly selected and determined by Northern blot analysis. RESULTS: Northern blot analysis revealed downregulated RPL 13 gene expression and upregulated SOD2 gene expression, which was identical to cDNA microarray results. Five differentially expressed genes (TPI1, BPGM, ALDOA, LDHA, and RRM1) were shown to be involved in cell metabolism, in six metabolic pathways. Four differentially expressed genes (TPI1, BPGM, ALDOA, and LDHA) were associated with carbohydrate metabolism, such as fructose metabolism, pyruvic acid metabolism, pentose phosphate pathway, glycolysis, and gluconeogenesis. One differentially expressed gene (RRM1) was correlated with purine and pyrimidine metabolism. CONCLUSION: Five metabolic genes (TPI1, BPGM, ALDOA, LDHA, and RRM1), which participate in cell carbohydrate and nucleotide metabolism, were shown to closely correlate with glioma development.
BACKGROUND: Genetic abnormalities and changes in gene expression have been shown in various grades of glioma. However, the relationship between gene expression patterns and pathways related to malignant transformation of glioma remains poorly understood. OBJECTIVE: To screen differentially expressed genes between normal and all-trans retinoic acid-treated glioma cell line SHG-44 cells with a complementary DNA (cDNA) microarray. DESIGN, TIME AND SETTING: The genomics, in vitro study was performed at the Laboratory of Neurobiology, Third Military Medical University of Chinese PLA, China from January to October 2007. MATERIALS: The glioma cell line SHG-44 was provided by the Third Military Medical University of Chinese PLA. AII-trans retinoic acid was purchased from Sigma, USA. cDNA microarray was purchased from City University of Hong Kong. METHODS: The glioma cell line SHG-44 was treated with 10 μmol/L all-trans retinoic acid for 3 days Differentiation-related genes were determined using cDNA microarray. MAIN OUTCOME MEASURES: Gene expression patterns were compared between normal and all-trans retinoic acid-treated SHG-44 cells. Differentially expressed genes were randomly selected and determined by Northern blot analysis. RESULTS: Northern blot analysis revealed downregulated RPL 13 gene expression and upregulated SOD2 gene expression, which was identical to cDNA microarray results. Five differentially expressed genes (TPI1, BPGM, ALDOA, LDHA, and RRM1) were shown to be involved in cell metabolism, in six metabolic pathways. Four differentially expressed genes (TPI1, BPGM, ALDOA, and LDHA) were associated with carbohydrate metabolism, such as fructose metabolism, pyruvic acid metabolism, pentose phosphate pathway, glycolysis, and gluconeogenesis. One differentially expressed gene (RRM1) was correlated with purine and pyrimidine metabolism. CONCLUSION: Five metabolic genes (TPI1, BPGM, ALDOA, LDHA, and RRM1), which participate in cell carbohydrate and nucleotide metabolism, were shown to closely correlate with glioma development.
基金
a grant from the Sichuan Provincial Bureau of Health,No. 050209
作者简介
Yangyun Han, Master, Associate chief physician, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, ChinaCorresponding author: Yi Zeng, Studying for doctorate, Associate chief physician, Department of Neurosurgery West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China E-mail: zengyiyz@gmail.com