期刊文献+

考虑辐射影响的接触传热模型与分析 被引量:4

Mathematical model and analysis of contact heat transfer with radiation
原文传递
导出
摘要 应用GW统计接触模型,建立了粗糙表面之间的接触导热模型.与实验数据的对比分析表明:该模型能够正确地反映接触导热现象.在此基础上,对接触表面进行了合理的简化,建立了接触界面间的辐射传热模型.数值计算表明:当接触表面的温度高于400K时,辐射的影响已不可忽略;载荷对接触导热热导的影响明显大于对辐射热导的影响,导热热导随载荷的增大迅速增大,而辐射热导以及等效辐射系数均随载荷的增大有所减小,这主要是由接触界面的空隙面积减少造成的;在接触面几何参数中,粗糙峰等效斜率对等效辐射系数起着主导作用,在相同的量纲1的载荷情况下,粗糙峰等效斜率越小,等效辐射系数越大;通过对本文提出的等效辐射系数的误差检验,结果表明其最大相对误差为10-3数量级,说明等效辐射系数仅仅为接触界面黑度、几何特性和接触载荷的函数,而与接触界面温度水平和温差无关,同时也间接证明了本文提出的等效辐射系数可以较为合理地描述接触界面间的辐射换热强度. A mathematical model of contact heat transfer was build by the GW statistic contact model, and the results agree well with experimental data. By simplifying the rough interfaces, a model of radiation heat transfer between interfaces was constructed. The numerical results indicate that the effect of radiation heat transfer can not be neglected when the temperature of interfaces above 400 K. Nondimensional contact load has a larger influence on the conductive than the radiant conductivity, and for the non-contact area decreasing as the non-dimensional contact load increasing, the conductive conductivity increasing quickly and the radiant conduc- tivity decreasing slowly. The influence of asperity slope on the equivalent radiation coefficient is the most important one among the geometric parameters of interfaces. At the same non-dimensional contact load, the smaller asperity slope the higher equivalent radiation coefficient. The numerical error-test of equivalent radiation coefficient shows that the order of the max relative error is 10^-3. Within the range of this paper, the equivalent radiation coefficient is only the function of interfaces' character and contact load. It has nothing to do with the temperature and temperature difference of interfaces. The equivalent radiation coefficient is an appropriate parameter to express the radiation intensity in contact heat transfer.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2009年第10期1328-1333,共6页 Journal of University of Science and Technology Beijing
关键词 粗糙表面 接触传热 接触载荷 热导 辐射传热 rough surface contact heat transfer contact load thermal conductivity radiation heat transfer
作者简介 豆瑞锋(1981-),男,博士研究生; 温治(1962-),男,教授,博士生导师,E-mail:wenzhi@me.ustb.edu.cn
  • 相关文献

参考文献10

  • 1Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc London A, 1966, 295:300.
  • 2Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. ASMEJ Triboi, 1991, 11:1.
  • 3赵兰萍,徐烈.固体界面间接触导热的分形模型[J].同济大学学报(自然科学版),2003,31(3):296-299. 被引量:9
  • 4应济,贾昱,陈子辰,高承煜.粗糙表面接触热阻的理论和实验研究[J].浙江大学学报(自然科学版),1997,31(1):104-109. 被引量:29
  • 5钟明,程曙霞,孙承纬,何立群.接触热阻的蒙特卡罗法模拟[J].高压物理学报,2002,16(4):305-308. 被引量:10
  • 6Fieberg C, Kneer R. Determination of thermal contact resistance from transient temperature measurements. Heat Mass Transfer, 2008 (51): 1017.
  • 7Leung M, Hsieh C K, Goswami D Y. Prediction of thermal contact conductance in vacuum by statistical mechanics, J Heat Transfer, 1998, 120(2): 51.
  • 8Gibson R D. The contact resistance for a semi-infinite cylinder in a vacuum. Appl Energy, 1976(2) : 57.
  • 9Hsieh C K. A critical evaluation of surface geometrical parameters for a nominally fiat surface model. ASMEJ Lubr Technol, 1974, 96:638.
  • 10Sunil K S, Ramamurthi K. Prediction of thermal contact conductance in vacuum using Monte Carlo simulation. J Thermophys Heat Transfer, 2001, 15(1) : 27.

二级参考文献7

  • 1[1]Greenwood J A,Williamson J B P.Contact of Nominally Flat Surfaces [J].Proc Royal Soc of London Series A,1966,295:300-319.
  • 2[2]Hsieh C K.A Critical Evaluation of Surface Geometrical Parameters for a Nominally Flat Surface Model [J].ASME Journal of Lubrication Technology,1974,96:638-639.
  • 3[3]Gibson R D.The Contact Resistance for a Semi-Infinite Cylinder in Vacuum [J].Appl Energ,1976,2:57-65.
  • 4[4]Leung M,Hsieh C K,Goswami D Y.Prediction of Thermal Contact Conductance in Vacuum by Statistical Mechanics [J].J Heat Trans-T ASME,1998,120: 51-57.
  • 5袁长良,表面粗糙度及其测量,1989年
  • 6皇甫哲,1989年
  • 7周广仁,粗糙表面测量、表征及其应用(译),1987年

共引文献44

同被引文献26

  • 1周庆安,刘志强.宝钢余热资源利用现状及前景分析[J].宝钢技术,2005(3):27-30. 被引量:4
  • 2田玉楚,侯春海.连续热镀锌退火炉的数学模型开发[J].冶金能源,1995,14(3):38-41. 被引量:15
  • 3李强,温治,豆瑞锋,程淑明,邹航,董斌.连续热镀锌退火炉内热过程数学模型及其分析[J].工业加热,2007,36(3):23-26. 被引量:9
  • 4Shaoyuan Li, Qing Chen, Guang-Bin Huang. Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network [J]. Neurocomputing, 2006, 69 : 523 - 536.
  • 5Chen Qing, Fan Yufei, Li Shaoyuan. Modeling for the temperature in continuous annealing furnace based on a generalized growing and pruning RBF neural network [C]. Proceedings of the 23rd Chinese Control Conference, 2004. 8:911 -915 (In Chinese) .
  • 6豆瑞锋,温治,邢一丁等.带钢连续热处理炉工艺过渡模型研究及实验验证[C].IEEECCDC2010:776-781.
  • 7C. V. Madhusudana. Thermal contact conductance [ M ]. Mechanical engineering series, New York Berlin Heidelberg, Spfinger-Verlag, 1996.
  • 8Shuzo Fukuda, Naotake Yoshihara, Yutaka Ohkubo, et al. Heat transfer analysis of miler quench system in continuous annealing line [ C ]. Transactious ISIJ, 1984, 24: 734-741.
  • 9C. Fieberg, R. Kneer. Determination of thermal contact resistance from transient temperature measurements [J ]. International Journal of Heat and Mass Transfer, 2008, 51 : 1017 - 1023.
  • 10M Bosochowska, R. Balendra, K. Chodnikiewicz. Measurements of thermal contact conductance [ J ]. Journal of Materials Processing Technology, 2003, 135: 204-210.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部