期刊文献+

第二代curvelet变换与区域能量的多聚焦图像融合方法 被引量:2

Multi-focus image fusion method based on curvelet transform of the second generation and regional energy
在线阅读 下载PDF
导出
摘要 目的第二代curvelet变换与图像区域能量相结合的方法实现多聚焦图像融合。方法对两幅多聚焦图像,分别进行curvelet变换,得到各自的低频系数和高频系数。利用低频系数取平均,高频系数取区域能量值取大者的融合规则,得到融合图像的curvelet系数。最后进行curvelet逆变换,得到融合图像。结果得到了全幅清晰的融合图像。结论与传统的小波变换法和cur-velet变换法相比,所获得的融合图像更清晰,边缘处更平滑,与理想图像的差距更小。 Aim To combine the curvelet transform of the second generation with image regional energy to achieve the multi-focus image fusion. Methods Two multi-focus images are decomposed using curvelet transform, then the curvelet low-bands coefficients and the high-bands coefficients are acquired. The low-bands coefficients are used in the method of averaging, and the high-bands coefficients are used in the method of choosing the max of the regional energy. Finally, the fused image is obtained by the inverse eurvelet transform. Results A clear fused image is acquired. Conclusion It is shown by the experiment that clearer fused image and smoother edge can be obtained by this method, which has less difference on the ideal image, compared with conventional wavelet transform method and curvelet transform method.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期750-754,共5页 Journal of Northwest University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2005A12)
关键词 图像融合 CURVELET变换 区域能量 image fusion curvelet transform regional energy
作者简介 郭敏,女,陕西师范大学教授,博士后,从事模式识别、图像处理、数据融合等方面的研究。
  • 相关文献

参考文献10

  • 1晁锐,张科,李言俊.一种基于小波变换的图像融合算法[J].电子学报,2004,32(5):750-753. 被引量:155
  • 2楚恒,李杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J].光电工程,2005,32(8):59-63. 被引量:28
  • 3DONOHO D L, DUNCAN M R. Digital curvelet transform : Strategy, implementation and experiments [ C ] ,// Proc SPIE San Jose. CA:SPIE Press ,2000 :12-30.
  • 4CANDES E J, DONOHO D L. New tight frames of curvelets and optimal representations of objects with piecewise- C^2 singularities [ J]. Comm on Pure and Appl,2004 (57) : 219-266.
  • 5CANDES E J, DEMANET L,DONOHO D L,et al. Fast discrete curvelet transform [ R ]. Applied and Computational Mathematics. California Institute of Technology, 2005 : 1-43.
  • 6那彦,史林,杨万海.基于成像机理的多小波多聚焦图像融合[J].系统工程与电子技术,2004,26(11):1549-1551. 被引量:12
  • 7张强,郭宝龙.应用第二代Curvelet变换的遥感图像融合[J].光学精密工程,2007,15(7):1130-1136. 被引量:29
  • 8FELIX J, MOGHADDAM H P, CHRISTIAAN C. Stolk sparsity-and continuity-promoting aeismic image recovery with curvelet frames[ J]. Applied and Computational Harmonic Analysis,2008, 24(2) : 150-173.
  • 9NENCINI F, GERZELLI A, et al. Remote sensing image fusion using the curvelet transform [ J ]. Information Fusion,2007,8(2) : 143-156.
  • 10CANDES E J, DEMANET L, DONOHO D L, et al. Fast Discrete Curvelet Transforms [ R ]. Applied and Computational Mathematics. California Institute of Technology, 2005 : 1-43.

二级参考文献35

  • 1[5]POHL C,GENDEREN J L.Multisensor image fusion in remote sensing:concepts,methods and applications[J].INT.J,.Remote Sensing,1998,9(5):823-854.
  • 2[6]NUNEZ J,OTAZU X,FORS O,et al..Multiresolution-based image fusion with additive wavelet decomposition[J].IEEE Transaction on Geoscience and Remote Sensing,1999,37(3):1204-1211.
  • 3[7]GARZELLI A,AIAZZI B.Interband structure modeling for oversampled multiresolution analysis-based pan-sharpening of very high resolution multispectral images[J].SPIE,2003,5207:678-689.
  • 4[9]DONOHO D L,DUNCAN M R.Digital eurvelet transform:strategy,implementation and experiments[J].SPIE,2000,4056:12-29.
  • 5[10]CANDES E J.Ridgelet:theory and applications[D].Stanford:Department of Statistics,Stanford University,1998.
  • 6[11]CANDES E J,DONOHO D L.New tight frames of curvelets and optimal representations of objects with piece-wise-C2 singularities[J].Comm.on Pure and Appl.Math.,2004,57:219-266.
  • 7[12]CANDES E J,DONOHO D L,YING L.Fast discrete curvelet transforms[R].California:Appliedand Cornputational Mathematics,California Institute of Technology,2005.
  • 8[14]MARIA G A,JOSE L S,RAQUEL G C,et al..Fusion of multispectral and panchromatic images using im-proved HIS and PCA mergers based on wavelet decomposition[J].IEEE Trans.on Geoscience and Remote Sensing,2004,42(6):1291-1299.
  • 9[15]WANG ZH,BOVIK A C.A universal image quality index[J].IEEE Signal Process.Lett.,2002,9(3):81-84.
  • 10[16]ALPARONE L,BARONTI S,GARZELLI A.A global quality measurement of pan-sharpened mulitspectral imagery[J].IEEE Geoscience and Remote Sensing Lett.,2004,1(4):313-317.

共引文献211

同被引文献18

  • 1周立俭,姬光荣,冯晨.多聚焦图像融合的多小波选择方法研究[J].通信技术,2008(5):152-154. 被引量:3
  • 2那彦,史林,杨万海.基于成像机理的多小波多聚焦图像融合[J].系统工程与电子技术,2004,26(11):1549-1551. 被引量:12
  • 3赵鲁燕,尹君.图像融合效果评价方法研究[J].遥感信息,2005,27(4):16-17. 被引量:15
  • 4李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 5何贵青,郝重阳.一种基于特征量积的遥感图像融合方法[J].计算机工程与应用,2007,43(3):71-73. 被引量:2
  • 6Candes E J,Demanet L, Donoho D, et al. Fast discrete Curvelet transform [R]. Stanford. Stanford University, CA, 2005.1-44.
  • 7Zhou Wang, Bovik A C, Sheikh H R, et al. Image qual- ity assessment., from error visibility to structural simi- larity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8Yan Sun, Chunhui Zhao, Ling Jiang. A new image fu-sion algorithm based on wavelet transform and the sec-ond generation curvelet transform [C] // Proceeding of2010 International Conference on Image Analysis andSignal Processing ( IASP 2011 ). Wuhan, China:IEEE,2010,438 - 441.
  • 9Qin Xue,Zhuangzhi Yan, Shengqian Wang. Mammo-graphic feature enhancement based on second genera-tion curvelet transform [C] // Proceeding of 2010 3rdInternational Conference on Biomedical Engineeringand Informatics (BMEI 2010) . Yantai,Shan dong,China:IEEE,2010:349 - 353.
  • 10Jiang Tao,Chen Chao. An ameliorative remote sens-tion curvelet transform[C] // Proceeding of 2009 Ur-ban Remote Sensing Joint event. Qingdao,China;IEEE,2009: 1-6.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部