摘要
针对小车一级倒立摆的起摆控制,以DRNN神经网络作为辨识器,在线自适应调整PD控制器的两项参数。在起摆范围相同的情况下,DRNN神经网络控制的倒立摆系统其模型参数变化范围为-50%~30%,传统PD控制倒立摆系统其参数变化范围为-40%~20%。结果表明,基于DRNN神经网络的PD控制器比传统的PD控制器具有较强的抗干扰能力和自适应能力,系统鲁棒性增强,效果明显优于传统的PD控制器。
The swing-up control of an inverted pendulum,a Diagonal Recurrent Neural Network(DRNN) is built to identify the system and self-tuning the PD gains.At the same ranges of swing-up,the system parameters ranged from -50% to 30% for selftuning PD control based on DRNN,from -40% to 20% for conventional PD controller.The simulation results show that the system,compared with conventional PD controller,the presented control system has great anti-jamming,adaptability and robustness.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第26期223-225,共3页
Computer Engineering and Applications
关键词
倒立摆
DRNN神经网络
PD控制
摆起
inverted pendulum
diagonal recurrent neural network
PD control
swing-up
作者简介
谢慕君(1969-),女,副教授,博士后,主要从事智能控制理论研究;
杨海蓉(1982-),女,硕士研究生,主要从事智能控制理论研究。