期刊文献+

图像分块重构和LDA融合的人脸识别方法 被引量:1

Face recognition using image block reconstruction and Linear Discriminant Analysis
在线阅读 下载PDF
导出
摘要 提出了一种新的基于图像分块重构和线性判别分析相融合的方法,主要用于人脸识别。该方法通过计算两幅图像之间图像块的重构均值误差,运用线性判别分析求出两幅图像降维后的欧式距离,融合重构误差和欧式距离计算这两幅图像之间的差别程度。识别过程中,待测图像与训练图像中差别最小的认为是属于同一个人。该方法在ORL人脸数据集上进行实验,并在PIE数据集上验证了其有效性。新方法能够有效克服光照变化、平移等影响,在识别性能上比较有优势。 This paper presents a new method combining the image block reconstruction and the Linear Discriminant Analysis (LDA),which is mainly used for face recognition.By calculating the average error of the reconstructed image blocks,using the linear discriminant analysis method in computing the distance between the two images after reducing dimensions,then it combines the reconstitute error and the distance to obtain the difference of the two images.During the recognition process ,the smallest distance among query image and training images are thought to be of the same person.This method makes experiments on ORL human face data sets and the validity checking test cases of this method on the PIE data sets.This new method effectively overcomes the effect of illumination variations,translation and so on with ,relative advantage in recognition performance.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第27期174-177,187,共5页 Computer Engineering and Applications
关键词 人脸识别 光照变化 线性判别分析(LDA) face recognition illumination variations Linear Discriminant Analysis(LDA)
作者简介 E—mail:3203463@163.com 程艳花(1983-),女,硕士研究生,主要研究方向:图像处理与模式识别; 谭怒涛,博士研究生,主要研究方向:生物特征识别; 黄磊,副研究员,硕士生导师,主要研究方向:生物特征识别; 王建英,教授,硕士生导师,主要研究方向:阵列信号处理与图像处理。
  • 相关文献

参考文献19

  • 1Zhao W,Chellappa R,Phillips P J,et al.Face recognition:A literature survey[J].ACM Comput Survey,2003,35(4) : 399-458.
  • 2Samal A,Iyengar P A.Automatic recognition and analysis of human faces and facial expressions:A survey[J].Pattern Recognition, 1992,25 (1):65-77.
  • 3Adini Y,Moses Y,Ullman S.Face recognition:The problem of compensating for changes in illumination direction[J].IEEE Trans Pattern Anal Machine Intell, 1997,19(7) :721-732.
  • 4Tian Y I,Kanade T, Cohn J F.Recognizing action units for facial expression analysis[J].IEEE Trans Pattern Anal Machine Intell,2001, 23(2):97-115.
  • 5Blanz V,Vetter T.Face recognition based on fitting a 3D morphable model[J].IEEE Trans Pattern Anal Machine Intell,2003,25 (9) : 1063-1074.
  • 6Lanitis A,Taylor C J,Cootes T F.Toward automatic simulation of aging effects on face images[J].IEEE Trans Image Process,2002,24 (4) :442-455.
  • 7Phillips P J.Matching pursuit filters applied to face identification[J]. IEEE Trans Image Process, 1998,7(8) : 1150-1164.
  • 8Lin S H,Kung S Y,Lin L J.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Trans Neural Networks, 1997,8( 1 ) : 114-132.
  • 9Nastar C,Ayach N.Frequency-based nonrigid motion analysis[J]. IEEE Trans Pattern Anal Mach Intell, 1996,18:1067-1079.
  • 10Turk M A,Pentland A P.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3( 1 ) : 71-86.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部