期刊文献+

一种基于多传感器数据融合的目标跟踪算法 被引量:3

Algorithm for Multi-sensor Data Fusion Target Tracking
在线阅读 下载PDF
导出
摘要 论述了目标跟踪的原理和数据融合技术,为了解决移动机器人系统中的传感器存在大量不确定性问题,提出了一种交叉传感器交叉特征(CSCM)数据融合算法,这种算法基于粒子滤波技术,融合多个传感器的信息,合并不同的状态空间模型,以此减弱系统和测量噪声,来估计移动机器人的位置和角度。在仿真实验中,我们分别比较了单一传感器和多传感器数据融合的不同情况,结果表明了这种算法的有效性,并展现了良好的跟踪性能。 The principle of target tracking and data fusion techniques were discussed. To resolve enormous uncertainty that exists in sensors of mobile robots, the Cross-Sensor and Cross-Modality(CSCM) data fusion algorithm was proposed. The algorithm is based on particle filter techniques, fuses the information coming from multiple sensors and merges different state space models. So it can be used to eliminate system and measurement noise and estimate value of position and heading of mobile robot, On simulation experiments, different cases, such as single sensor and multi-sensor data fusion, were compared. The results demonstrate the effectiveness of this algorithm and exhibits good tracking performance.
作者 刘国成
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第19期6183-6185,6189,共4页 Journal of System Simulation
基金 国家留学基金委政府互换奖学金项目(20053303)
关键词 移动机器人 数据融合 粒子滤波 目标跟踪 mobile robots data fusion particle filter target tracking
作者简介 刘国成(1972-),男,湖北枣阳人,博士,研究方向为非线性滤波与数据融合。
  • 相关文献

参考文献5

  • 1P Vadakkepat, L Jing. Improved Particle Filter in Sensor Fusion for Tracking Randomly Moving Object [J]. IEEE Transactions on Instrumentation and Measuremen (S0018-9456), 2006, 55(5): 1823-1832.
  • 2F Carlo, M Davy, E Duflos, P Vanheeghe. Particle Filtering for Multisensor Data Fusion with Switching Observation Models: Application to Land Vehicle Positioning [J].IEEE Transactions on Signal Processing (S 1053-587X), 2007, 55(6): 2703-2719.
  • 3A Doucet, Nando de Freitas, N Gordon. Sequential Monte Carlo in Practice [M]. Germany: Springer-Verlag, 2001.
  • 4M M Olama, S M Djouadi, I G Papageorgiou, C D Charalambous. Position and Velocity Tracking in Mobile Networks Using Particle Filtering and Kalman Filtering with Compartion [J]. IEEE Transactions on Vehicular Technology (S0018-9545), 2008, 57(2): 1001-1010.
  • 5S Thrun, W Burgard, D Fox. Probabilistic Robotics [M]. USA: The MIT Press, 2005.

同被引文献35

  • 1罗雁,苏清祖,陈晓东,葛如海,张学荣.汽车行驶称重系统的算法研究与精度分析[J].汽车工程,2005,27(4):495-497. 被引量:4
  • 2黄力.基于分布式群身份认证的传感器网络设计与实现[J].计算机工程,2007,33(10):161-163. 被引量:24
  • 3FOX D, BURGARD W, KRUPPA H, et al. A probabilistic approach to collaborative multi-robot localization [ J ]. Au- tonomous Robots, 2000, 8 (3) : 325-344.
  • 4FENWICK J W, NEWMAN P M, LEONARD J J. Coopera- tive concurrent mapping and localization [ C ]//Proceedings of the IEEE International Conference on Robotics and Auto- mation. Piscataway, USA: IEEE, 2002: 1810-1817.
  • 5ZHANG L, SHEN P Y. A new method for moving object tracking with multi-robot[ J ]. Journal of Convergence Infor- mation Technology, 2001, 6(8) : 35-43.
  • 6MOTFAGHI R, VAUGHAN R. An integrated particle filter and potential field method applied to cooperative muhi-robot target tracking[ J ]. Autonomous Robots, 2007, 23 ( 1 ) : 19- 35.
  • 7MADHAVAN R, FREGENCE K, PARKER L E. Distribu- ted cooperative outdoor multi-robot localization and mapping [J]. Autonomous Robots, 2004, 17(1 ) : 23-39.
  • 8REKLEITIS I, DUDEK G, MILIOS E. Probabilistic cooper- ative localization and mapping in practice[ C]//Proceedings of the IEEE International Conference in Robotics and Auto- mation. Taipei, China, 2003: 1907-1912.
  • 9Di MARCO M, GARULLI A, GIANNITRAPANI A, et al. Simultaneous localization and map building for a team of co- operating robot: a set membership approach [ J ]. IEEE Transactions on Robotics and Automation, 2003, 19 (2): 238-248.
  • 10WILLIAMS S B, DISSANAYAKE G, DURRANT-WHYTE F. Towards multi-vehicle simultaneous localization and map- ping[ C ]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002 : 2743-2748.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部