期刊文献+

吸附-光催化联用去除室内挥发性有机物 被引量:11

The Combined Adsorption-Photocatalysis for the Removal of Indoor Volatile Organic Compounds
原文传递
导出
摘要 多孔吸附剂吸附和纳米TiO2光催化是目前室内挥发性有机物(VOCs)去除所采用的主要手段,但存在吸附剂容量有限、饱和失效、TiO2光催化剂活性低、失活和负载困难等问题。多孔吸附剂与纳米TiO2联用,通过TiO2光催化作用可实现吸附剂的原位再生,增加吸附剂的吸附容量;通过多孔吸附剂的吸附作用可为TiO2光催化提供高浓度污染环境,提高催化剂活性,抑制催化剂失活,消除水蒸气对TiO2表面活性吸附位的竞争吸附,解决了催化剂分离难题,从而实现对室内VOCs污染的高效深度净化。本文对近年来多孔吸附剂与纳米TiO2光催化联用去除室内VOCs进行了综述。介绍了吸附-光催化联用去除室内VOCs的多孔吸附剂类型,吸附/光催化复合材料的制备方法及常用反应器,分析了吸附-光催化联用去除室内VOCs过程中水蒸气、催化剂失活对光催化的影响等问题。 Adsorption and TiO2 photocatalysis are widely used for the removal of indoor volatile organic compounds (VOCs). However, due to the limited adsorption capacity, saturated absorbent needs further regeneration or be replaced, the problems of low activity, deactivation and separation for TiO2 photocatalysis restrict its large scale application. For the combined adsorption-photocatalysis composite, TiO2 photocatalysis can realize in-situ regeneration of adsorbent then improve its adsorption capacity. Adsorbent can provide high organic concentration environment for loaded TiO2 photocatalyst, improve photocatalytic activity and retard catalyst deactivation, inhibite the competition adsorption of H2 0 for active sites. This paper reviews recent progress of the combined adsorption-photocatalysis for the removal of indoor VOCs. Type of adsorbents, methods of composite preparation and reactors are introduced. Effect of the combination of adsorption and photocatalysis on the structure and photocatalytic properties of TiO2 include surface characteristics, activity and deactivation are also systematically investigated.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2009年第10期2067-2076,共10页 Progress in Chemistry
基金 教育部新世纪优秀人才支持计划 教育部博士点基金项目(No.20050225006) 国家自然科学基金项目(No.30771692)资助
关键词 吸附 TIO2光催化 联用 挥发性有机物(VOCs) adsorption titanium dioxide photocatalysis combined volatile organic compounds(VOCs)
作者简介 Corresponding author e-mail:liushouxin@ 126. com
  • 相关文献

参考文献78

  • 1US EPA, Characterizing air emission from indoor sources, EPA report: EPM600/F-95/O05, US Environmental Protection Agency, Washington DC, 1995.
  • 2Hong J G, Manguhn J, Freitag D, et al. Fresen. J. Anal. Chem., 2001, 371:961-965.
  • 3Jutta B, Erich J, TUrkan K, et al. Fresen. J. Anal. Chem., 1999, 363 : 399-403.
  • 4Cornejo J J, Munoz F G, Ma C Y, et al. Ecotoxicology., 1999, 8: 311-320.
  • 5Brown V M, Crump D R. Environ. Monit. Assess., 1998, 52: 43-55.
  • 6Cardenas L M, Brassington D J, Allan B J, et al. J. Atmos Chem., 2000, 37:53-80.
  • 7Ao C H, Lee S C. Chem. Eng. Sci., 2005, 60(1): 103-109.
  • 8Rosana M A, Wilson F J. Appl. Catal. B: Environ., 1997, 14(1/ 2) : 55-68.
  • 9刘守新(Liu SX),刘鸿(Liu H).光催化及光电催化基础与应用(Basic and application of photocatalytic and photoelectroeatalytic).北京:化学工业出版社(Beijing:Chemical Industry Press),2006.56-57.
  • 10Liu H, Li X Z. J. Phys. Chem. B, 2003, 107:8988-8996.

二级参考文献352

共引文献693

同被引文献196

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部