期刊文献+

MFCC中的基音频率信息对说话人识别系统性能的影响 被引量:11

The influence of fundamental frequency to performance of speaker recognition using MFCC
在线阅读 下载PDF
导出
摘要 目前对MFCC的应用与研究,一般忽略了基音频率对MFCC的影响.分析发现,基音频率会影响MFCC对声道特性的准确描述,进而影响说话人识别系统的性能;由此提出了一种基于平滑幅度谱的SMFCC(smoothing MFCC),在YOHO说话人识别数据库上的实验表明,SMFCC性能在整体上优于MFCC,而在女性说话人数据集上性能提高尤其明显,并且具有更好的时间鲁棒性. Fundamental frequency can affect the accurate description of MFCC and degrade the performance of speaker recognition system, so a new parameter called SMFCC (smoothing MFCC) was proposed. The parameter mainly employs the method of smoothing amplitude spectral to reduce the effect of fundamental frequency. Experiments in YOHO speech database show that SMFCC is more effective and robust than the conventional MFCC, especially in the female speaker recognition system.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第8期859-863,884,共6页 JUSTC
关键词 说话人识别 梅尔频率倒谱系数 基音频率 谱包络 speaker recognition MFCC pitch spectral envelope
作者简介 陆伟,男,1969年生,博士生/讲师.研究方向:语音信号处理.E-mail:luwei@ustc.edu.cn 通讯作者:戴蓓荷,教授.E-mail:bqdai@ustc.edu.cn
  • 相关文献

参考文献11

  • 1Bimbot F, Bonastre J F, Fredouille C, et al. A tutorial on text-independent speaker verification[J]. EURASIP Journal on Applied Signal Processing, 2004, 4: 430-451.
  • 2Davis S B, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE Transactions on Acoustics, Speech Signal Process, 1980, 28(4): 357-366.
  • 3Shannon B J, Paliwal K K. Feature extraction from higher-lag autocorrelation coefficients for robust speech recognition [J]. Speech Communication, 2006, 48 (11):1 458-1 485.
  • 4Skowronski M D, Harris J G. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition [J]. Journal of the Acoustical Society of America, 2004, 116(3): 1 774- 1 780.
  • 5郭武,王仁华,戴礼荣.基于基音周期与清浊音信息的梅尔倒谱参数[J].数据采集与处理,2007,22(2):229-233. 被引量:1
  • 6章熙春,曹燕,张军,韦岗.语音MFCC特征计算的改进算法[J].数据采集与处理,2005,20(2):161-165. 被引量:6
  • 7林玮,杨莉莉,徐柏龄.基于修正MFCC参数汉语耳语音的话者识别[J].南京大学学报(自然科学版),2006,42(1):54-62. 被引量:24
  • 8Shannon B J, Paliwal K K. A comparative study of filter bank spacing for speech recognition[C]// Proceedings of the Microelectronic Engineering Research Conference. Brisbane, Australia, 2003:1- 3.
  • 9QuatieriTF.离散时间语音信号处理:原理与应用[M].赵胜辉,刘家康,谢湘,等译.北京:电子工业出版社,2004.
  • 10Paul D. The spectral envelope estimation vocoder[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(4): 786-794.

二级参考文献30

  • 1栗学丽,丁慧,徐柏龄.基于熵函数的耳语音声韵分割法[J].声学学报,2005,30(1):69-75. 被引量:34
  • 2杨莉莉,李燕,徐柏龄.汉语耳语音库的建立与听觉实验研究[J].南京大学学报(自然科学版),2005,41(3):311-317. 被引量:13
  • 3Schwartz M F, Rine M F. Identification of speaker sex from isolated, whispered vowels. Journal of Acoustical Society of America, 1968, 44 ( 6 ) :1 736-1737.
  • 4Yu H. The whisper is not helpful for treating hoarseness and recovering voice. Journal of the Central University for Nationalities, 1996,5 ( 2 ) :163 - 166.
  • 5Itoh T, Takeda K,Itakura F. Acoustic analysis and recognition of whispered speech. Proceedings of ICASSP. Orlando, Florida, USA, 2002,389 -392.
  • 6Morris R W, Clements A M. Reconstruction of speech from whispers. Medical Engineering and Physics, 2002,24 (8) : 515 - 520.
  • 7Morris R W. Enhancement and recognition of whispered speech. PhD Thesis, Georgia Institute of Technology, 2002.
  • 8Li X L, Xu B L. Formant comparison between Mandarin whispered and voiced vowels. Acta Acustica United with Acustica, 2005,91 (6) : 1 -7.
  • 9Sahar E B, John H L H. A comparative study of tradition and newly proposed features for recognition of speech under stress. IEEE Transactions of Speech and Signal Processing, 2000, 8(4) :429 -442.
  • 10Lawrence R, Juang B H. Fundamentals of speech recognition. Prentice Hall, 1993, 321 - 389.

共引文献28

同被引文献62

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部