期刊文献+

有限长同轴电缆电容的数值计算方法 被引量:10

Numerical Method for Capacitance Matrix of Coaxial Cables of Finite Length
在线阅读 下载PDF
导出
摘要 具有屏蔽层或者铠装的单相电缆通常都具有同轴的结构,在芯线和屏蔽层之间填充着绝缘材料。在对包含这种电缆的线路进行暂稳态分析时,通常需要用到电缆的电容。为此提出了一种基于矩量法的数值计算方法来计算具有这种结构的有限长电缆的电容。在这种方法中,同轴电缆被模拟成为一组圆筒状的金属表面,表面之间填充着绝缘介质,外层覆盖着绝缘护套。沿着轴向将电缆分割成一组圆筒状的单元,之后在每个单元上建立平均电位方程和电场方程并形成一个方程组。通过方程组变换,可以计算得到电缆的电容矩阵。针对典型的电缆安装方式,给出了电容矩阵的数值计算结果,并将计算结果与已有的二维计算方法进行比对,验证了该方法的有效性。 We put forward a moment-method-based procedure to determine the capacitance matrix of coaxial finitelong cables with. In this procedure, the cables are represented by a number of charged cylindrical surfaces among which dielectric material is filled. The external surface is covered with insulated sheath. Then each cable is divided into a set of cylindrical elements along the cable axis. Average potential and electric field equations are then estab- lished respectively to build a matrix equation. Through matrix calculation, the capacitance matrix of the cables can be obtained. For typical cable installation, the numerical results for the capacitance matrix are presented. By comparing with a two-dimensional numerical method, the procedure presented is validated finally.
出处 《高电压技术》 EI CAS CSCD 北大核心 2009年第8期1920-1926,共7页 High Voltage Engineering
基金 上海市浦江科技人才计划(08PJ14060) 上海市教育委员会科研创新项目(08ZZ92 09YZ341) 上海市教委重点学科项目(J51301)~~
关键词 同轴电缆 电容矩 矩量法 有限长度 平均电位方程 平均电场方程 coaxial cables capacitance matrix method of moment finite length average potential equation average electrical-field equation
作者简介 边晓燕1976-,女,博士,讲师 主要研究方向为电力系统稳定、控制、风力发电 E—mail:kuliz@163.com 周歧斌1977-,男,博士,工程师 主要研究方向为雷电防护与电磁兼容 E-mail:zhouqb@lightning.sh.cn
  • 相关文献

参考文献17

二级参考文献19

  • 1Miller C M. Capacitances of a shielded balanced-pair transmission line[J]. Bell Syst Tech J, 1972, 50(3):759--776.
  • 2Paul C R, Feather A E. Computation of the transmission line inductance and capacitance matrices from the generalized capacitance matrix[J]. IEEE Transaction, 1976, EMC-18(4) : 175--183.
  • 3Nordgard J D. The capacitances and surface-charge distributions of a shielded balanced paid[J]. IEEE Trans, 1976, MTT-24(2) : 94--100.
  • 4Nordgard J D. The capacitances and surface charge distributions of a shielded unbalanced pair[J]. IEEE Trans, 1977, MTT-25(2) : 137--140.
  • 5An H, Wang T, Bosisio R G, et al. Accurate closed form expressions for characteristic impedance of coupled line with sliced coaxial cable[J]. Electronics Letters, 1005, 31(23) : 2010--2020.
  • 6Benahmed N, Feham M. Finite element analysis of RF couplers with sliced coaxial cable[J]. Microwave Journal, 2000,43(11):106--120.
  • 7Teppati V, Goano M, Ferrero A. Conformal-mapping design tools for coaxial couplers with complex cross section[J].IEEE Trans, 2002,MTT-50(12) : 2339--2345.
  • 8Zheng O, Hou D, Xie F, et al. Solution of two-dimensional Laplace equation by multipole theory method[J]. Journal of Electromagnetic Waves Applications, 1999, 13(8):1061--1076.
  • 9施广德,电力技术,1991年,6期
  • 10电线电缆,1989年,1期

共引文献38

同被引文献122

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部